Skip to main content

Advertisement

Log in

Notch activation suppresses endothelial cell migration and sprouting via miR-223-3p targeting Fbxw7

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Angiogenesis involves temporo-spatially coordinated endothelial cell (EC) proliferation, differentiation, migration, and sprouting. Notch signaling is essential in regulating EC behaviors during angiogenesis, but its downstream mechanisms remain incompletely defined. In the current study, we show that miR-223-3p is a downstream molecule of Notch signaling and mediates the role of Notch signaling in regulating EC migration and sprouting. In human umbilical vein endothelial cells (HUVECs), Notch activation by immobilized Dll4, a Notch ligand, upregulated miR-223-3p, and Notch activation–mediated miR-223-3p upregulation could be blocked by a γ-secretase inhibitor (DAPT). miR-223-3p overexpression apparently repressed HUVEC migration, leading to attenuated lumen formation and sprouting capacities. Transcriptome comparison and subsequent qRT-PCR validation further indicated that miR-223-3p downregulated the expression of multiple genes involved in EC migration, axon guidance, extracellular matrix remodeling, and angiogenesis. In addition, miR-223-3p antagonist transfection abolished Notch-mediated repression of EC migration and sprouting. By quantitative reverse transcription–polymerase chain reaction (qRT-PCR), western blotting, and reporter assay analysis, we confirmed that miR-223-3p directly targeted F-box and WD repeat domain–containing 7 (Fbxw7). Meanwhile, Fbxw7 overexpression could efficiently rescue the impaired migration capacity of ECs under miR-223-3p overexpression. In summary, these results identify that Notch activation–induced miR-223-3p suppresses EC migration and sprouting via Fbxw7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Alabi RO, Farber G, Blobel CP (2018) Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ-specific vascular beds. Physiol Rev 98:2025–2061

    Article  CAS  Google Scholar 

  • Autiero M, De Smet F, Claes F, Carmeliet P (2005) Role of neural guidance signals in blood vessel navigation. Cardiovasc Res 65:629–638

    Article  CAS  Google Scholar 

  • Bajbouj K, Ramakrishnan RK, Hamid Q (2021) Role of matrix metalloproteinases in angiogenesis and its implications in asthma. J Immunol Res 2021:6645072

    PubMed  PubMed Central  Google Scholar 

  • Baker M, Robinson DS, Lechertier T, Barber PR, Tavora B, D’Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K (2011) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7:89–104

    Article  Google Scholar 

  • Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3:a006569

    Article  Google Scholar 

  • Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X, Li L (2019) The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal 13:291–301

    Article  Google Scholar 

  • De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663

    Article  Google Scholar 

  • Dou GR, Wang YC, Hu XB, Hou LH, Wang CM, Xu JF, Wang YS, Liang YM, Yao LB, Yang AG, Han H (2008) RBP-J, the transcription factor downstream of Notch receptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J 22:1606–1617

    Article  CAS  Google Scholar 

  • Feng J, Chen L, Jiang Y, Tao Y (2020) The role of Apelin/APJ in a mouse model of oxygen-induced retinopathy. Invest Ophthalmol vis Sci 61:47

    Article  Google Scholar 

  • Fonseca CG, Barbacena P, Franco CA (2020) Endothelial cells on the move: dynamics in vascular morphogenesis and disease. Vasc Biol 2:H29–H43

    Article  Google Scholar 

  • Gao F, Zhang YF, Zhang ZP, Fu LA, Cao XL, Zhang YZ, Guo CJ, Yan XC, Yang QC, Hu YY, Zhao XH, Wang YZ, Wu SX, Ju G, Zheng MH, Han H (2017) miR-342-5p regulates neural stem cell proliferation and differentiation downstream to Notch signaling in mice. Stem Cell Rep 8:1032–1045

    Article  CAS  Google Scholar 

  • Greenspan LJ, Weinstein BM (2021) To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 24:251–269

    Article  Google Scholar 

  • Hoeck JD, Jandke A, Blake SM, Nye E, Spencer-Dene B, Brandner S, Behrens A (2010) Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci 13:1365–1372

    Article  CAS  Google Scholar 

  • Hu L, Lv X, Li D, Zhang W, Ran G, Li Q, Hu J (2021) The anti-angiogenesis role of FBXW7 in diabetic retinopathy by facilitating the ubiquitination degradation of c-Myc to orchestrate the HDAC2. J Cell Mol Med 25:2190–2202

    Article  CAS  Google Scholar 

  • Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, Bi W, Xu M, Jiao S, Maloney WJ, Wang Y (2018) miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. Mol Ther 26:1299–1312

    Article  CAS  Google Scholar 

  • Jiang L, Lv L, Liu X, Jiang X, Yin Q, Hao Y, Xiao L (2019) miR-223 promotes oral squamous cell carcinoma proliferation and migration by regulating FBXW7. Cancer Biomark 24:325–334

    Article  CAS  Google Scholar 

  • Joussen AM, Ricci F, Paris LP, Korn C, Quezada-Ruiz C, Zarbin M (2021) Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. Eye (lond) 35:1305–1316

    Article  Google Scholar 

  • Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbee M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M (2021) A guide to the composition and functions of the extracellular matrix. FEBS J. https://doi.org/10.1111/febs.15776

    Article  PubMed  Google Scholar 

  • Kumar V, Palermo R, Talora C, Campese AF, Checquolo S, Bellavia D, Tottone L, Testa G, Miele E, Indraccolo S, Amadori A, Ferretti E, Gulino A, Vacca A, Screpanti I (2014) Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia 28:2324–2335

    Article  CAS  Google Scholar 

  • Kurashige J, Wantanabe M, Iwatsuki M, Kinoshita K, Saito S, Hiyoshi Y, Kamohara H, Baba Y, Mimori K, Baba H (2012) Overexpression of microRNA-223 regulates the ubiquitin ligase FBXW7 in oesophageal squamous cell carcinoma. Br J Cancer 106:182–188

    Article  CAS  Google Scholar 

  • Luo W, Garcia-Gonzalez I, Fernandez-Chacon M, Casquero-Garcia V, Sanchez-Munoz MS, Muhleder S, Garcia-Ortega L, Andrade J, Potente M, Benedito R (2021) Arterialization requires the timely suppression of cell growth. Nature 589:437–441

    Article  CAS  Google Scholar 

  • Muhleder S, Fernandez-Chacon M, Garcia-Gonzalez I, Benedito R (2021) Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 78:1329–1354

    Article  CAS  Google Scholar 

  • Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16:196–208

    Article  CAS  Google Scholar 

  • Shao J, Fan G, Yin X, Gu Y, Wang X, Xin Y, Yao Y (2019) A novel transthyretin/STAT4/miR223–3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy. Mol Cell Endocrinol 498:110541

    Article  CAS  Google Scholar 

  • Shi L, Fisslthaler B, Zippel N, Fromel T, Hu J, Elgheznawy A, Heide H, Popp R, Fleming I (2013) MicroRNA-223 antagonizes angiogenesis by targeting beta1 integrin and preventing growth factor signaling in endothelial cells. Circ Res 113:1320–1330

    Article  CAS  Google Scholar 

  • Sun JX, Chang TF, Li MH, Sun LJ, Yan XC, Yang ZY, Liu Y, Xu WQ, Lv Y, Su JB, Liang L, Han H, Dou GR, Wang YS (2018) SNAI1, an endothelial-mesenchymal transition transcription factor, promotes the early phase of ocular neovascularization. Angiogenesis 21:635–652

    Article  CAS  Google Scholar 

  • Sun JX, Dou GR, Yang ZY, Liang L, Duan JL, Ruan B, Li MH, Chang TF, Xu XY, Chen JJ, Wang YS, Yan XC, Han H (2021) Notch activation promotes endothelial quiescence by repressing MYC expression via miR-218. Mol Ther Nucleic Acids 25:554–566

    Article  CAS  Google Scholar 

  • Taha M, Shaker OG, Abdelsalam E, Taha N (2020) Serum a proliferation-inducing ligand and MicroRNA-223 are associated with rheumatoid arthritis: diagnostic and prognostic implications. Mol Med 26:92

    Article  Google Scholar 

  • Tetzlaff F, Fischer A (2018) Control of blood vessel formation by Notch signaling. Adv Exp Med Biol 1066:319–338

    Article  CAS  Google Scholar 

  • Tiwari A, Mukherjee B, Dixit M (2018) MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets 18:266–277

    Article  CAS  Google Scholar 

  • Wang H, Chen J, Zhang S, Zheng X, Xie S, Mao J, Cai Y, Lu X, Hu L, Shen J, Chai K, Chen W (2020) miR-223 regulates autophagy associated with cisplatin resistance by targeting FBXW7 in human non-small cell lung cancer. Cancer Cell Int 20:258

    Article  CAS  Google Scholar 

  • Wang R, Wang Y, Liu N, Ren C, Jiang C, Zhang K, Yu S, Chen Y, Tang H, Deng Q, Fu C, Wang Y, Li R, Liu M, Pan W, Wang P (2013) FBW7 regulates endothelial functions by targeting KLF2 for ubiquitination and degradation. Cell Res 23:803–819

    Article  Google Scholar 

  • Yan XC, Cao J, Liang L, Wang L, Gao F, Yang ZY, Duan JL, Chang TF, Deng SM, Liu Y, Dou GR, Zhang J, Zheng QJ, Zhang P, Han H (2016) miR-342–5p is a Notch downstream molecule and regulates multiple angiogenic pathways including Notch, vascular endothelial growth factor and transforming growth factor beta Signaling. J Am Heart Assoc 5:e003042

    PubMed  PubMed Central  Google Scholar 

  • Yeh CH, Bellon M, Nicot C (2018) FBXW7: a critical tumor suppressor of human cancers. Mol Ther 17:115

    Google Scholar 

  • Yuan X, Berg N, Lee JW, Le TT, Neudecker V, Jing N, Eltzschig H (2018) MicroRNA miR-223 as regulator of innate immunity. J Leukoc Biol 104:515–524

    Article  CAS  Google Scholar 

  • Yumimoto K, Nakayama KI (2020) Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 67:1–15

    Article  CAS  Google Scholar 

  • Zhang MW, Shen YJ, Shi J, Yu JG (2020) MiR-223-3p in cardiovascular diseases: a biomarker and potential therapeutic target. Front Cardiovasc Med 7:61056

    Google Scholar 

  • Zhou X, Jin W, Jia H, Yan J, Zhang G (2015) miR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7. J Exp Clin Cancer Res 34:28

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31671523, 31730041, 82003110) and Natural Science Foundation of Shaanxi Province (2020JQ-441).

Author information

Authors and Affiliations

Authors

Contributions

R.N.W. and Z.Y.Y. performed experiments and collected data. L.L., X.X.F., B.C., and X.Y.Z. assisted with experiments and data collection. H.H., X.C.Y., and Q.J.Z. designed the experiments and prepared the manuscript.

Corresponding authors

Correspondence to Qijun Zheng, Xianchun Yan or Hua Han.

Ethics declarations

Ethics approval and consent to participate

The use of human samples was approved by the Ethics Committee of Xijing Hospital, Fourth Military Medical University. All human participants signed informed consent for the use of their umbilical cord biopsies. The animal experiments were permitted by the Animal Experiment Administration Committee of the Fourth Military Medical University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ruonan Wang and Ziyan Yang are contributed equally to this study

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1473 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yang, Z., Liang, L. et al. Notch activation suppresses endothelial cell migration and sprouting via miR-223-3p targeting Fbxw7. In Vitro Cell.Dev.Biol.-Animal 58, 124–135 (2022). https://doi.org/10.1007/s11626-022-00649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00649-y

Keywords

Navigation