Skip to main content

Advertisement

Log in

PTEN-mediated mitophagy and APE1 overexpression protects against cardiac hypoxia/reoxygenation injury

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Autophagy plays a critical role in cardiac hypoxia/reoxygenation (H/R). Studies indicated that the phosphatase and tensin homolog (PTEN) influences level of autophagy. This study aims to explore the role of PTEN mediating a specific autophagy, mitophagy, in cardiac H/R injury. H9c2 cells were cultured and suffered hypoxia and reoxygenation treatment. To inhibit function of PTEN protein, bpv (phen) was added into medium throughout the process of H/R injury. In addition, we overexpressed the apurinic/apyrimidinic endonuclease 1 (APE1) in H/R-injured H9c2 cells. Then the cell viability, apoptosis, and release of Cytochrome C were determined through CCK-8 assay, flow cytometry, and western blotting, respectively. The results indicated that H/R significantly induced autophagy, as identified by an increased level of microtubule-associated protein 1 light chain 3 beta (LC3B) and a decreased level of sequestosome 1 (P62). After stimulation of bpv (phen), PTEN-induced putative kinase protein 1 (PINK1)/Parkin-mediated mitophagy was inhibited, while apoptosis and releases of Cytochrome C were both significantly increased, indicating an exacerbated H/R injury. Furthermore, the overexpression of APE1 attenuated the apoptosis and releases of Cytochrome C induced by H/R injury, and promoted PINK1/Parkin-mediated mitophagy. Our findings provide an insight into the PTEN and APE1 overexpression protects against cardiac hypoxia/reoxygenation injury, which may be through inducing the PINK1/Parkin-mediated mitophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Aonuma T, Takehara N, Maruyama K, Kabara M, Matsuki M, Yamauchi A, Kawabe JI, Hasebe N (2016) Apoptosis-resistant cardiac progenitor cells modified with apurinic/apyrimidinic endonuclease/redox factor 1 gene overexpression regulate cardiac repair after myocardial infarction. Stem Cells Transl Med 5:1067–1078

    Article  CAS  Google Scholar 

  • Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogierdenis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243

    Article  CAS  Google Scholar 

  • Bingol B, Tea J, Phu L, Reichelt M, Bakalarski C, Song Q, Foreman O, Kirkpatrick D, Sheng M (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510:370–375

    Article  CAS  Google Scholar 

  • Braunwald E (2015) The war against heart failure: the Lancet lecture. Lancet 385:812–824

    Article  Google Scholar 

  • Chen JH, Zhang P, Chen WD, Li DD, Wu XQ, Deng R, Jiao L, Li X, Ji J, Feng GK (2015b) ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy 11:239–252

    Article  Google Scholar 

  • Chen Q, Yue F, Li W, Zou J, Xu T, Huang C, Zhang Y, Song K, Huang G, Xu G (2015a) Potassium bisperoxo(1,10-phenanthroline) oxovanadate (bpV(phen)) induces apoptosis and pyroptosis and disrupts the P62-HDAC6 protein interaction to suppress the acetylated microtubule-dependent degradation of autophagosomes. J Biol Chem 290:26051–26058

    Article  CAS  Google Scholar 

  • Christos M, Tomas J, Johan LC, Stefan A, Lars W, Ulf S (2010) Effect of angiotensin-converting enzyme inhibition on one-year mortality and frequency of repeat acute myocardial infarction in patients with acute myocardial infarction. Am J Cardiol 105:1229

    Article  Google Scholar 

  • Cui H, Li X, Li N, Qi K, Li Q, Jin C, Zhang Q, Jiang L, Yang Y (2014) Induction of autophagy by Tongxinluo through the MEK/ERK pathway protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury. J Cardiovasc Pharmacol 64:180–190

    Article  CAS  Google Scholar 

  • Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins C, Iwamoto Y, Thompson B, Carlson AL, Heidt T (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329

    Article  CAS  Google Scholar 

  • Gerczuk PZ, Kloner RA (2012) An update on cardioprotection : a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol 59:969–978

    Article  Google Scholar 

  • Gong G, Karamanlidis G, Chi FL, Tian R, Wang W (2013) Mitochondrial complex I deficiency promotes oxidative stress during ischemia reperfusion of cardiac myocytes. Circ Res A224

  • Gustafsson ÅB, Gottlieb RA (2009) Autophagy in ischemic heart disease. Circ Res 104:150–158

    Article  CAS  Google Scholar 

  • Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14:2179–2190

    Article  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM (2015) Targeting myocardial reperfusion injury--the search continues. N Engl J Med 373:1073–1075

    Article  Google Scholar 

  • Huang Z, Han Z, Ye B, Dai Z, Shan P, Lu Z, Dai K, Wang C, Huang W (2015) Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol 762:1–10

    Article  CAS  Google Scholar 

  • Huang Z, Wu S, Kong F, Cai X, Ye B, Shan P, Huang W (2017) MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med 21:467–474

    Article  CAS  Google Scholar 

  • Jian X, Xiao-Yan Z, Bin H, Yu-Feng Z, Bo K, Zhi-Nong W, Xin N (2011) MiR-204 regulate cardiomyocyte autophagy induced by hypoxia-reoxygenation through LC3-II. Int J Cardiol 148:110–112

    Article  Google Scholar 

  • Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  CAS  Google Scholar 

  • Kanamori H, Takemura G, Goto K, Maruyama R, Ono K, Nagao K, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T (2011) Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol 300:2261–2271

    Article  Google Scholar 

  • Kaur N, Dhiman M, Perez-Polo JR, Mantha AK (2015) Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Aβ25-35-induced neurotoxicity in human neuroblastoma cells. J Neurosci Res 93:938–947

    Article  CAS  Google Scholar 

  • Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN, Gustafsson AB (2013) Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288:915–926

    Article  CAS  Google Scholar 

  • Li M, Zhong Z, Zhu J, Xiang D, Dai N, Cao X, Qing Y, Yang Z, Xie J, Li Z (2010) Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1. J Biol Chem 285:14871–14881

    Article  CAS  Google Scholar 

  • Liu L, Wu Y, Huang X (2016) Orientin protects myocardial cells against hypoxia-reoxygenation injury through induction of autophagy. Eur J Pharmacol 776:90–98

    Article  CAS  Google Scholar 

  • Loos B, Genade S, Ellis B, Lochner A, Engelbrecht AM (2011) At the core of survival: autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp Cell Res 317:1437–1453

    Article  CAS  Google Scholar 

  • Members WC, O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, Lemos JAD, Ettinger SM, Fang JC, Fesmire FM (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol 61:e78–e140

    Google Scholar 

  • Pines A, Perrone L, Bivi N, Romanello M, Damante G, Gulisano M, Kelley MR, Quadrifoglio F, Tell G (2005) Activation of APE1/Ref-1 is dependent on reactive oxygen species generated after purinergic receptor stimulation by ATP. Nucleic Acids Res 33:4379–4394

    Article  CAS  Google Scholar 

  • Przyklenk K, Dong Y, Undyala VV, Whittaker P (2012) Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 94:197

    Article  CAS  Google Scholar 

  • Roe ND, Xu X, Kandadi MR, Hu N, Pang J, Weiser-Evans MC, Ren J (2015) Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1-AMPK signaling and autophagy. Biochim Biophys Acta 1852:290–298

    Article  CAS  Google Scholar 

  • Scott TL, Wicker CA, Suganya R, Dhar B, Pittman T, Horbinski C, Izumi T (2016) Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog 56:325

    Article  Google Scholar 

  • Siddall HK, Warrell CE, Davidson SM, Mocanu MM, Yellon DM (2008) Mitochondrial PINK1-a novel cardioprotective kinase? Cardiovasc Drugs Ther 22:507–508

    Article  Google Scholar 

  • Sun L, Zhao M, Yang Y, Xue RQ, Yu XJ, Liu JK, Zang WJ (2015) Acetylcholine attenuates hypoxia/reoxygenation injury by inducing mitophagy through PINK1/Parkin signal pathway in H9c2 cells. J Cell Physiol 231:1171–1181

    Article  Google Scholar 

  • Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11:601–619

    Article  CAS  Google Scholar 

  • Tian Y, Daoud A, Shang J (2012) Effects of bpV(pic) and bpV(phen) on H9c2 cardiomyoblasts during both hypoxia/reoxygenation and H2O2-induced injuries. Mol Med Rep 5:852–858

    CAS  PubMed  Google Scholar 

  • Ueno T, Sato W, Horie Y, Komatsu M, Tanida I, Yoshida M, Ohshima S, Mak TW, Watanabe S, Kominami E (2008) Loss of Pten, a tumor suppressor, causes the strong inhibition of autophagy without affecting LC3 lipidation. Autophagy 4:692–700

    Article  CAS  Google Scholar 

  • Webster KA, Discher DJ, Kaiser S, Hernandez O, Sato B, Bishopric NH (1999) Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest 104:239–252

    Article  CAS  Google Scholar 

  • Whitaker AM, Flynn TS, Freudenthal BD (2018) Molecular snapshots of APE1 proofreading mismatches and removing DNA damage. Nat Commun 9:1–11

    Article  Google Scholar 

  • Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  Google Scholar 

  • Yin Y, Li G, Yang J, Yang C, Zhu M, Jin Y, Mcnutt MA (2018) PTENα regulates mitophagy and maintains mitochondrial quality control. Autophagy 14:1742–1760

    Article  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  CAS  Google Scholar 

  • Zhang ZL, Fan Y, Liu ML (2012) Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol Cell Biochem 365:243–250

    Article  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c–dependent activation of caspase-3. Cell 90:405–413

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuping Li.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Lin, D., Chen, M. et al. PTEN-mediated mitophagy and APE1 overexpression protects against cardiac hypoxia/reoxygenation injury. In Vitro Cell.Dev.Biol.-Animal 55, 741–748 (2019). https://doi.org/10.1007/s11626-019-00389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00389-6

Keywords

Navigation