Skip to main content
Log in

Improved synergistic anticancer efficacy of quercetin in combination with PI-103, rottlerin, and G0 6983 against MCF-7 and RAW 264.7 cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Flavonoids have been chronicles of the history of a long way journey in the cure of physiological or pathophysiological conditions in various diseases including cancer. Our previous findings suggest the extensive mechanism of quercetin (QUE) mediated regression of cell survival, cell proliferation, oxidative stress, inflammation, and angiogenesis via modulating PI3K and PKC signaling in lymphoma as well as hepatocellular carcinoma. PI3K-PKC pathway is a key monitor of mammalian cells regulated by its different isoenzymes, which may exert similar or opposite cellular effects by differential coupling of signaling pathways. Put forward the invention of selective inhibitors against various isoenzymes is beneficial to reduce the burden of inclusive deleterious effects of drug for normal physiological process. Therefore, we hypothesized the improved anticancer efficacy of QUE in combination with isoenzyme inhibitors—rottlerin (ROT-PKCδ inhibitor), G0 6983 (PKCα inhibitor), and PI-103 (p110α-class I PI3K inhibitor) in MCF-7 and RAW 264.7 cells. QUE significantly improves the cytotoxicity of ROT + G0 6983 ranged 30–55% and PI-103 ranged 24–63% after 24–48 h against MCF-7 cells. Additionally in the presence of QUE, the improved cytotoxicity of ROT + G0 6983 is observed to range 69–75% and PI-103 ranged 45–88% after 24–48 h in RAW 264.7 cells. This increment in cell deaths are positively correlated with enhanced morphological alteration observed in MCF-7 cells. Further, QUE significantly increases the attenuation of PKCα level approximately by 50% in combination with PI-103. Overall results of the current study suggested that QUE improves the synergistic anticancer efficacy in combination with PI-103, ROT, and G0 6983 in MCF-7 and RAW 264.7 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen-Petersen BL, Carter CJ, Ohm AM, Reyland ME (2014) Protein kinase Cδ is required for ErbB2-driven mammary gland tumorigenesis and negatively correlates with prognosis in human breast cancer. Oncogene 33(10):1306–1315

    Article  CAS  PubMed  Google Scholar 

  • Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, Lampen A (2017) Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res 62. https://doi.org/10.1002/mnfr.201700447

  • Ashour AA, Abdel-Aziz AA, Mansour AM, Alpay SN, Huo L, Ozpolat B (2014) Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic cancer cells. Apoptosis 19:241–258

    Article  CAS  PubMed  Google Scholar 

  • Babu PR, Babu KN, Peter PL, Rajesh K, Babu PJ (2013) Influence of quercetin on the pharmacokinetics of ranolazine in rats and in vitro models. Drug Dev Ind Pharm 39(6):873–879

    Article  CAS  PubMed  Google Scholar 

  • Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  CAS  PubMed  Google Scholar 

  • Brito AF, Ribeiro M, Abrantes AM, Pires AS, Teixo RJ, Tralhão JG, Botelho MF (2015) Quercetin in cancer treatment, alone or in combination with conventional therapeutics? Curr Med Chem 22(26):3025–3039

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Pichardo L, Dharmawardhane SF (2012) Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer 64:1058–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan ST, Yang NC, Huang CS, Liao JW, Yeh SL (2013) Quercetin enhances the antitumor activity of trichostatin a through upregulation of p53 protein expression in vitro and in vivo. PLoS One 8:e54255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, Kearsley JH, Li Y (2014) PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis 5:e1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lv Q, Ma J, Liu Y (2018) PLCγ2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling. Cell Prolif 51(3):e12437

    Article  CAS  PubMed  Google Scholar 

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  CAS  Google Scholar 

  • Cote B, Carlson LJ, Rao DA, Alani AW (2015) Combinatorial resveratrol and quercetin polymeric micelles mitigate doxorubicin induced cardiotoxicity in vitro and in vivo. J Control Release 213:128–133

    Article  CAS  PubMed  Google Scholar 

  • De Angelis C (2008) Side effects related to systemic cancer treatment: are we changing the promethean experience with molecularly targeted therapies? Curr Oncol 15:198–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Follo-Martinez A, Banerjee N, Li X, Safe S et al (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 65:494–504

    Article  CAS  PubMed  Google Scholar 

  • Djuzenova CS, Fiedler V, Katzer A, Michel K, Deckert S, Zimmermann H, Sukhorukov VL, Flentje M (2016) Dual PI3K and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule. Oncotarget 7(25):38191–38209

    Article  PubMed  PubMed Central  Google Scholar 

  • Enzenmüller S, Gonzalez P, Debatin KM, Fulda S (2013) Chloroquine overcomes resistance of lung carcinoma cells to the dual PI3K/mTOR inhibitor PI103 by lysosome-mediated apoptosis. Anti-Cancer Drugs 24(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G, Marks F (1994) Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 199:93–98

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa M, Kaizawa H, Moritomo H, Koizumi T, Ohishi T, Okada M, Ohta M, Tsukamoto S, Parker P, Workman P, Waterfield M (2006) Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg Med Chem 14:6847–6858

    Article  CAS  PubMed  Google Scholar 

  • Hong KK, Ball GE, Black DS, Kumar N (2015) The mosaic of Rottlerin. J Org Chem 80:10668–10674

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Feng S, Wang L, Zhao Z, Su J, Yin X, Zheng N, Zhou X, Xia J, Wang Z (2017) Inhibition of Notch-1 pathway is involved in rottlerin-induced tumor suppressive function in nasopharyngeal carcinoma cells. Oncotarget 8(37):62120–62130

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I, Rzeski W (2014) Quercetin and sorafenib as a novel and effective couple in programmed cell death induction in human gliomas. Neurotox Res 26(1):64–77

    Article  CAS  PubMed  Google Scholar 

  • Jang NY, Kim DH, Cho BJ, Choi EJ, Lee JS, Wu HG, Chie EK, Kim IA (2015) Radiosensitization with combined use of olaparib and PI-103 in triple-negative breast cancer. BMC Cancer 15:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juneja M, Kobelt D, Walther W, Voss C, Smith J, Specker E, Neuenschwander M, Gohlke BO, Dahlmann M, Radetzki S, Preissner R, von Kries JP, Schlag PM, Stein U (2017) Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biol 15(6):e2000784. https://doi.org/10.1371/journal.pbio.2000784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavithaa K, Sumathi S, Paulpandi M, Padma PR (2014) Increased anticancer efficacy by the combined administration of quercetin in multidrug resistant breast cancer cells. BMR Cancer Res 1:1–13

    Google Scholar 

  • Li J, Zhu F, Lubet RA, De Luca A, Grubbs C, Ericson ME, D’Alessio A, Normanno N, Dong Z, Bode AM (2013) Quercetin-3-methyl ether inhibits lapatinib-sensitive and -resistant breast cancer cell growth by inducing G(2)/M arrest and apoptosis. Mol Carcinog 52(2):134–143

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Lin C, Li Y (2014) Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal 26:1303–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurya AK, Vinayak M (2015a) Quercetin regresses Dalton’s lymphoma growth via suppression of PI3K/AKT signaling leading to upregulation of p53 and decrease in energy metabolism. Nutr Cancer 67(2):354–363

    Article  CAS  PubMed  Google Scholar 

  • Maurya AK, Vinayak M (2015b) Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention. Tumour Biol 36(11):8913–8924

    Article  CAS  PubMed  Google Scholar 

  • Maurya AK, Vinayak M (2015c) Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep 42(9):1419–1429

    Article  CAS  PubMed  Google Scholar 

  • Maurya AK, Vinayak M (2015d) Abstract A07: decline in the growth of murine T-cell lymphoma via modulation of PI3K signaling pathway: key role of quercetin and PI-103. Mol Cancer Ther 14:A07. https://doi.org/10.1158/1538-8514.PI3K14-A07

    Article  Google Scholar 

  • Maurya AK, Vinayak M (2016a) PI-103 and quercetin attenuate PI3K-AKT signaling pathway in T-cell lymphoma exposed to hydrogen peroxide. PLoS One 11(8):e0160686. https://doi.org/10.1371/journal.pone.0160686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurya AK, Vinayak M (2016b) Breast cancer stem cell mediated aberrant signaling and epithelial-mesenchymal transition targets: hope for breast cancer therapy. Int J Cancer Oncol 3(3):1–7

    Google Scholar 

  • Maurya AK, Vinayak M (2017a) Quercetin attenuates cell survival, inflammation and angiogenesis via modulation of AKT signaling in murine T-cell lymphoma. Nutr Cancer 69(3):470–480

    Article  CAS  PubMed  Google Scholar 

  • Maurya AK, Vinayak M (2017b) PI-103 attenuates PI3K-AKT signaling and induces apoptosis in murine T-cell lymphoma. Leuk Lymphoma 58(5):1153–1161

    Article  CAS  PubMed  Google Scholar 

  • No M, Choi EJ, Kim IA (2009) Targeting HER2 signaling pathway for radiosensitization: alternative strategy for therapeutic resistance. Cancer Biol Ther 8:2351–2361

    Article  CAS  PubMed  Google Scholar 

  • Ohno I, Eibl G, Odinokova I, Edderkaoui M, Damoiseaux RD, Yazbec M, Abrol R, Goddard WA 3rd, Yokosuka O, Pandol SJ, Gukovskaya AS (2010) Rottlerin stimulates apoptosis in pancreatic cancer cells through interactions with proteins of the Bcl-2 family. Am J Physiol Gastrointest Liver Physiol 298:63–73

    Article  CAS  Google Scholar 

  • Pandey SK, Patel DK, Maurya AK, Thakur R, Mishra DP, Vinayak M, Haldar C, Maiti P (2016) Controlled release of drug and better bioavailability using poly (lactic-co-glycolic acid) nanoparticles. Int J Biol Macromol 89:99–110

    Article  CAS  PubMed  Google Scholar 

  • Pingili RB, Pawar AK, Challa SR (2015) Systemic exposure of paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats and in vitro model: risk of liver toxicity. Drug Dev Ind Pharm 41(11):1793–1800

    Article  CAS  PubMed  Google Scholar 

  • Prevo R, Deutsch E, Sampson O, Diplexcito J, Cengel K, Harper J, O’Neill P, McKenna WG, Patel S, Bernhard EJ (2008) Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Res 68:5915–5923

    Article  CAS  PubMed  Google Scholar 

  • Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S, Henley A, Di-Stefano F, Ahmad Z, Guillard S, Bjerke LM, Kelland L, Valenti M et al (2007) Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 67:5840–5850

    Article  CAS  PubMed  Google Scholar 

  • Schlachterman A, Valle F, Wall KM, Azios NG, Castillo L, Morell L, Washington AV, Cubano LA, Dharmawardhane SF (2008) Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Transl Oncol 1:19–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrero M, Planès R, Bahraoui E (2017) PKC-δ isoform plays a crucial role in tat-TLR4 signalling pathway to activate NF-κB and CXCL8 production. Sci Rep 7(1):2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BN, Kumar D, Shankar S, Srivastava RK (2012) Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol 84:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stuckrath I, Weiss J, Fischer F, Michel K, Goel A, Regales L, Politi KA, Perera S, Getlik M, Heukamp LC, Ansen S, Zander T, Beroukhim R, Kashkar H, Shokat KM, Sellers WR, Rauh D, Orr C, Hoeflich KP, Friedman L, Wong KK, Pao W, Thomas RK (2009) Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc Natl Acad Sci U S A 106:18351–18356

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuorkey MJ (2015) Cancer therapy with phytochemicals: present and future perspectives. Biomed Environ Sci 28:808e819

    Article  Google Scholar 

  • Wang Z, Shen GH, Xie JM, Li B, Gao QG (2018) Rottlerin upregulates DDX3 expression in hepatocellular carcinoma. Biochem Biophys Res Commun 495(1):1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zhao B, She Y, Song X (2018) Dexmedetomidine ameliorates lidocaine-induced spinal neurotoxicity via inhibiting glutamate release and the PKC pathway. Neurotoxicology 69:77–83

    Article  CAS  PubMed  Google Scholar 

  • Yadav MK, Maurya AK, Rajput G, Manar KK, Vinayak M, Drew MGB, Singh N (2017a) New planar trans-copper (II) β-dithioester chelate complexes: synthesis, characterization, anticancer activity and DNA-binding/cleavage studies. J Coord Chem 70(4):1–20

    Article  CAS  Google Scholar 

  • Yadav MK, Maurya AK, Rajput G, Manar KK, Vinayak M, Drew MGB, Singh N (2017b) Synthesis, characterization, DNA binding and cleavage activity of homoleptic zinc (II) β-oxodithioester chelate complexes. J Coord Chem 70(18):3171–3185

    Article  CAS  Google Scholar 

  • Yin S, Sethi S, Reddy KB (2010) Protein kinase Cδ and caspase-3 modulate TRAIL-induced apoptosis in breast tumor cells. J Cell Biochem 111(4):979–987

    Article  CAS  PubMed  Google Scholar 

  • Zamin LL, Filippi-Chiela EC, Dillenburg-Pilla P, Horn F, Salbego C, Lenz G (2009) Resveratrol and quercetin cooperate to induce senescence-like growth arrest in C6 rat glioma cells. Cancer Sci 100:1655–1662

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhao J, Jiao H (2014) Synergistic growth-suppressive effects of quercetin and cisplatin on HepG2 human hepatocellular carcinoma cells. Appl Biochem Biotechnol 172:784–791

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang M, Zhao X, Zhang L, Wu Y, Wang B (2017) Hu W. Rottlerin as a novel chemotherapy agent for adrenocortical carcinoma. Oncotarget 8(14):22825–22834

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MV is thankful to UGC-CAS program to Department of Zoology for infrastructural facilities.

Funding

This research was supported by University Grants Commission (UGC), India (Project No. F 40-209/2011 (SR) dated June 29, 2011) and CSIR, India, for JRF & SRF (CSIR Award No. File No. 09/013(0338)/2010-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjula Vinayak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, A.K., Vinayak, M. Improved synergistic anticancer efficacy of quercetin in combination with PI-103, rottlerin, and G0 6983 against MCF-7 and RAW 264.7 cells. In Vitro Cell.Dev.Biol.-Animal 55, 36–44 (2019). https://doi.org/10.1007/s11626-018-0309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-018-0309-8

Keywords

Navigation