Skip to main content

Advertisement

Log in

TNF-alpha and Notch signaling regulates the expression of HOXB4 and GATA3 during early T lymphopoiesis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

During the early thymus colonization, Notch signaling activation on hematopoietic progenitor cells (HPCs) drives proliferation and T cell commitment. Although these processes are driven by transcription factors such as HOXB4 and GATA3, there is no evidence that Notch directly regulates their transcription. To evaluate the role of NOTCH and TNF signaling in this process, human CD34+ HPCs were cocultured with OP9-DL1 cells, in the presence or absence of TNF. The use of a Notch signaling inhibitor and a protein synthesis inhibitor allowed us to distinguish primary effects, mediated by direct signaling downstream Notch and TNF, from secondary effects, mediated by de novo synthesized proteins. A low and physiologically relevant concentration of TNF promoted T lymphopoiesis in OP9-DL1 cocultures. TNF positively modulated the expression of both transcripts in a Notch-dependent manner; however, GATA3 induction was mediated by a direct mechanism, while HOXB4 induction was indirect. Induction of both transcripts was repressed by a GSK3β inhibitor, indicating that activation of canonical Wnt signaling inhibits rather than induces their expression. Our study provides novel evidences of the mechanisms integrating Notch and TNF-alpha signaling in the transcriptional induction of GATA3 and HOXB4. This mechanism has direct implications in the control of self-renewal, proliferation, commitment, and T cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3):651–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlin A, Fasth A (2015) Chronic granulomatous disease—conventional treatment vs. hematopoietic stem cell transplantation: an update. Curr Opin Hematol 22(1):41–45

    Article  PubMed  CAS  Google Scholar 

  • Allen RD 3rd, Kim HK, Sarafova SD, Siu G (2001) Negative regulation of CD4 gene expression by a HES-1-c-Myb complex. Mol Cell Biol 21(9):3071–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA (2007) Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27(1):89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awong G, Herer E, Surh CD, Dick JE, La Motte-Mohs RN, Zuniga-Pflucker JC (2009) Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 114(5):972–982

    Article  CAS  PubMed  Google Scholar 

  • Baron M (2003) An overview of the Notch signalling pathway. Semin Cell Dev Biol 14(2):113–119

    Article  CAS  PubMed  Google Scholar 

  • Bell JJ, Bhandoola A (2008) The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452(7188):764–767

    Article  CAS  PubMed  Google Scholar 

  • Beslu N, Krosl J, Laurin M, Mayotte N, Humphries KR, Sauvageau G (2004) Molecular interactions involved in HOXB4-induced activation of HSC self-renewal. Blood 104(8):2307–2314

    Article  CAS  PubMed  Google Scholar 

  • Blom B, Spits H (2006) Development of human lymphoid cells. Annu Rev Immunol 24:287–320

    Article  CAS  PubMed  Google Scholar 

  • Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66(10):1631–1646

    Article  CAS  PubMed  Google Scholar 

  • Bren GD, Solan NJ, Miyoshi H, Pennington KN, Pobst LJ, Paya CV (2001) Transcription of the RelB gene is regulated by NF-kappaB. Oncogene 20(53):7722–7733

    Article  CAS  PubMed  Google Scholar 

  • Buza-Vidas N, Duarte S, Luc S, Bouriez-Jones T, Woll PS, Jacobsen SEW (2011) GATA3 is redundant for maintenance and self-renewal of hematopoietic stem cells. Blood 118(5):1291–1293

    Article  CAS  PubMed  Google Scholar 

  • Carlin SM, Khoo ML, Ma DD, Moore JJ (2012) Notch signalling inhibits CD4 expression during initiation and differentiation of human T cell lineage. PLoS One 7(10), e45342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catelain C, Michelet F, Hattabi A, Poirault-Chassac S, Kortulewski T, Tronik-Le Roux D, Vainchenker W, Lauret E (2014) The Notch Delta-4 ligand helps to maintain the quiescence and the short-term reconstitutive potential of haematopoietic progenitor cells through activation of a key gene network. Stem Cell Res 13(3 Pt A):431–441

    Article  CAS  PubMed  Google Scholar 

  • Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24(11):2437–2447

    Article  CAS  PubMed  Google Scholar 

  • Choi B, Chun E, Kim SY, Kim M, Lee KY, Kim SJ (2012) Notch-induced hIL-6 production facilitates the maintenance of self-renewal of hCD34+ cord blood cells through the activation of Jak-PI3K-STAT3 pathway. Am J Pathol 180(1):351–364

    Article  CAS  PubMed  Google Scholar 

  • Cobas M, Wilson A, Ernst B, Mancini SJ, MacDonald HR, Kemler R, Radtke F (2004) Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 199(2):221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corredor J, Yan F, Shen CC, Tong W, John SK, Wilson G, Whitehead R, Polk DB (2003) Tumor necrosis factor regulates intestinal epithelial cell migration by receptor-dependent mechanisms. Am J Physiol Cell Physiol 284(4):C953–C961

    Article  CAS  PubMed  Google Scholar 

  • De Smedt M, Hoebeke I, Plum J (2004) Human bone marrow CD34(+) progenitor cells mature to T cells on OP9-DL1 stromal cell line without thymus microenvironment. Blood Cell Mol Dis 33(3):227–232

    Article  CAS  Google Scholar 

  • De Smedt M, Leclercq G, Vandekerckhove B, Kerre T, Taghon T, Plum J (2011) T-lymphoid differentiation potential measured in vitro is higher in CD34 + CD38-/lo hematopoietic stem cells from umbilical cord blood than from bone marrow and is an intrinsic property of the cells. Haematologica 96(5):646–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espinosa L, Santos S, Ingles-Esteve J, Munoz-Canoves P, Bigas A (2002) p65-NFkappaB synergizes with Notch to activate transcription by triggering cytoplasmic translocation of the nuclear receptor corepressor N-CoR. J Cell Sci 115(Pt 6):1295–1303

    CAS  PubMed  Google Scholar 

  • Fang TC, Yashiro-Ohtani Y, Del Bianco C, Knoblock DM, Blacklow SC, Pear WS (2007) Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27(1):100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Gessler M (2007) Delta-Notch—and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res 35(14):4583–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frassoni F, Podesta M, Maccario R, Giorgiani G, Rossi G, Zecca M, Bacigalupo A, Piaggio G, Locatelli F (2003) Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood 102(3):1138–1141

    Article  CAS  PubMed  Google Scholar 

  • Frey MA, Guess C, Allison J, Kurtzberg J (2009) Umbilical cord stem cell transplantation. Semin Oncol Nurs 25(2):115–119

    Article  PubMed  Google Scholar 

  • Garcia-Ojeda ME, Klein Wolterink RG, Lemaitre F, Richard-Le Goff O, Hasan M, Hendriks RW, Cumano A, Di Santo JP (2013) GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice. Blood 121(10):1749–1759

    Article  CAS  PubMed  Google Scholar 

  • Giampaolo A, Sterpetti P, Bulgarini D, Samoggia P, Pelosi E, Valtieri M, Peschle C (1994) Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. Blood 84(11):3637–3647

    CAS  PubMed  Google Scholar 

  • Giannola DM, Shlomchik WD, Jegathesan M, Liebowitz D, Abrams CS, Kadesch T, Dancis A, Emerson SG (2000) Hematopoietic expression of HOXB4 is regulated in normal and leukemic stem cells through transcriptional activation of the HOXB4 promoter by upstream stimulating factor (USF)-1 and USF-2. J Exp Med 192(10):1479–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graf T (2008) Immunology: blood lines redrawn. Nature 452(7188):702–703

    Article  CAS  PubMed  Google Scholar 

  • Grech AP, Riminton DS, Gabor MJ, Hardy CL, Sedgwick JD, Godfrey DI (2000) Increased thymic B cells but maintenance of thymic structure, T cell differentiation and negative selection in lymphotoxin-alpha and TNF gene-targeted mice. Dev Immunol 8(1):61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83(5):793–802

    Article  CAS  PubMed  Google Scholar 

  • Guan E, Wang JH, Laborda J, Norcross M, Baeuerle P, Hoffman T (1996) T cell leukemia-associated human Notch translocation-associated Notch homologue has I kappa B-like activity and physically interacts with nuclear factor-kappa B proteins in T cells. J Exp Med 183(5):2025–2032

    Article  CAS  PubMed  Google Scholar 

  • Haddad R, Pflumio F, Vigon I, Visentin G, Auvray C, Fichelson S, Amsellem S (2008) The HOXB4 homeoprotein differentially promotes ex vivo expansion of early human lymphoid progenitors. Stem Cells 26(2):312–322

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2014) Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26(3):253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriks RW, Nawijn MC, Engel JD, van Doorninck H, Grosveld F, Karis A (1999) Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur J Immunol 29(6):1912–1918

    Article  CAS  PubMed  Google Scholar 

  • Hills D, Gribi R, Ure J, Buza-Vidas N, Luc S, Jacobsen SE, Medvinsky A (2011) Hoxb4-YFP reporter mouse model: a novel tool for tracking HSC development and studying the role of Hoxb4 in hematopoiesis. Blood 117(13):3521–3528

    Article  CAS  PubMed  Google Scholar 

  • Ho IC, Tai TS, Pai SY (2009) GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 9(2):125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoya T, Kuroha T, Moriguchi T, Cummings D, Maillard I, Lim KC, Engel JD (2009) GATA-3 is required for early T lineage progenitor development. J Exp Med 206(13):2987–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoya T, Maillard I, Engel JD (2010) From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev 238(1):110–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hozumi K, Mailhos C, Negishi N, Hirano K, Yahata T, Ando K, Zuklys S, Hollander GA, Shima DT, Habu S (2008) Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med 205(11):2507–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikawa T, Kawamoto H, Goldrath AW, Murre C (2006) E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 203(5):1329–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194(3):237–255

    Article  CAS  PubMed  Google Scholar 

  • Jaleco AC, Neves H, Hooijberg E, Gameiro P, Clode N, Haury M, Henrique D, Parreira L (2001) Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 194(7):991–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, Kuttler F, Malanchi I, Birchmeier W, Leutz A, Huelsken J, Held W (2008) Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111(1):142–149

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, Tomita K (2000) The bHLH gene Hes1 regulates differentiation of multiple cell types. Mol Cells 10(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Niwa Y, Shimojo H, Kobayashi T, Ohtsuka T (2010) Ultradian oscillations in Notch signaling regulate dynamic biological events. Curr Top Dev Biol 92:311–331

    Article  CAS  PubMed  Google Scholar 

  • Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13(14):4042–4045

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kageyama R (2011) Hes1 oscillations contribute to heterogeneous differentiation responses in embryonic stem cells. Genes (Basel) 2(1):219–228

    Google Scholar 

  • Kobayashi T, Kageyama R (2014) Expression dynamics and functions of Hes factors in development and diseases. Curr Top Dev Biol 110:263–283

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M, Manley NR, Duarte A, Macdonald HR, Radtke F (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205(11):2515–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kok K, Arnosti DN (2015) Dynamic reprogramming of chromatin: paradigmatic palimpsests and HES factors. Front Genet 6:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kutlesa S, Zayas J, Valle A, Levy RB, Jurecic R (2009) T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system. Exp Hematol 37(8):909–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC (2005) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105(4):1431–1439

    Article  PubMed  CAS  Google Scholar 

  • Lawrence HJ, Largman C (1992) Homeobox genes in normal hematopoiesis and leukemia. Blood 80(10):2445–2453

    CAS  PubMed  Google Scholar 

  • Li C, Zhang S, Lu Y, Zhang Y, Wang E, Cui Z (2013) The roles of Notch3 on the cell proliferation and apoptosis induced by CHIR99021 in NSCLC cell lines: a functional link between Wnt and Notch signaling pathways. PLoS One 8(12), e84659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liptay S, Schmid RM, Nabel EG, Nabel GJ (1994) Transcriptional regulation of NF-kappa B2: evidence for kappa B-mediated positive and negative autoregulation. Mol Cell Biol 14(12):7695–7703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Chi AW, Arnett KL, Chiang MY, Xu L, Shestova O, Wang H, Li YM, Bhandoola A, Aster JC, Blacklow SC, Pear WS (2010) Notch dimerization is required for leukemogenesis and T-cell development. Genes Dev 24(21):2395–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi L, Ciana P, Cappellini C, Trecca D, Guerrini L, Migliazza A, Maiolo AT, Neri A (1995) Structural and functional characterization of the promoter regions of the NFKB2 gene. Nucleic Acids Res 23(12):2328–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacEwan DJ (2002) TNF ligands and receptors—a matter of life and death. Br J Pharmacol 135(4):855–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magri M, Yatim A, Benne C, Balbo M, Henry A, Serraf A, Sakano S, Gazzolo L, Levy Y, Lelievre JD (2009) Notch ligands potentiate IL-7-driven proliferation and survival of human thymocyte precursors. Eur J Immunol 39(5):1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Mayani H (2010) Biological differences between neonatal and adult human hematopoietic stem/progenitor cells. Stem Cells Dev 19(3):285–298

    Article  PubMed  Google Scholar 

  • McLarren KW, Lo R, Grbavec D, Thirunavukkarasu K, Karsenty G, Stifani S (2000) The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J Biol Chem 275(1):530–538

    Article  CAS  PubMed  Google Scholar 

  • McLarren KW, Theriault FM, Stifani S (2001) Association with the nuclear matrix and interaction with Groucho and RUNX proteins regulate the transcription repression activity of the basic helix loop helix factor Hes1. J Biol Chem 276(2):1578–1584

    Article  CAS  PubMed  Google Scholar 

  • Mikels AJ, Nusse R (2006) Wnts as ligands: processing, secretion and reception. Oncogene 25(57):7461–7468

    Article  CAS  PubMed  Google Scholar 

  • Milsom MD, Schiedlmeier B, Bailey J, Kim MO, Li D, Jansen M, Ali AM, Kirby M, Baum C, Fairbairn LJ, Williams DA (2009) Ectopic HOXB4 overcomes the inhibitory effect of tumor necrosis factor-{alpha} on Fanconi anemia hematopoietic stem and progenitor cells. Blood 113(21):5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohtashami M, Shah DK, Nakase H, Kianizad K, Petrie HT, Zuniga-Pflucker JC (2010) Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. J Immunol 185(2):867–876

    Article  CAS  PubMed  Google Scholar 

  • Moretti P, Simmons P, Thomas P, Haylock D, Rathjen P, Vadas M, D'Andrea R (1994) Identification of homeobox genes expressed in human haemopoietic progenitor cells. Gene 144(2):213–219

    Article  CAS  PubMed  Google Scholar 

  • Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12(8):695–708

    Article  CAS  PubMed  Google Scholar 

  • Osipo C, Golde TE, Osborne BA, Miele LA (2008) Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Investig 88(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Panepucci RA, Calado RT, Rocha V, Proto-Siqueira R, Silva WA Jr, Zago MA (2007) Higher expression of transcription targets and components of the nuclear factor-kappaB pathway is a distinctive feature of umbilical cord blood CD34+ precursors. Stem Cells 25(1):189–196

    Article  CAS  PubMed  Google Scholar 

  • Panepucci RA, Oliveira LH, Zanette DL, Viu Carrara Rde C, Araujo AG, Orellana MD, Bonini de Palma PV, Menezes CC, Covas DT, Zago MA (2010) Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells. Stem Cells Dev 19(3):321–332

    Article  CAS  PubMed  Google Scholar 

  • Pineault N, Helgason CD, Lawrence HJ, Humphries RK (2002) Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Plum J, De Smedt M, Verhasselt B, Offner F, Kerre T, Vanhecke D, Leclercq G, Vandekerckhove B (1999) In vitro intrathymic differentiation kinetics of human fetal liver CD34+CD38- progenitors reveals a phenotypically defined dendritic/T-NK precursor split. J Immunol 162(1):60–68

    CAS  PubMed  Google Scholar 

  • Prasad VK, Kurtzberg J (2009) Umbilical cord blood transplantation for non-malignant diseases. Bone Marrow Transplant 44(10):643–651

    Article  CAS  PubMed  Google Scholar 

  • Pyatt DW, Stillman WS, Yang Y, Gross S, Zheng JH, Irons RD (1999) An essential role for NF-kappaB in human CD34(+) bone marrow cell survival. Blood 93(10):3302–3308

    CAS  PubMed  Google Scholar 

  • Radtke F, Wilson A, Mancini SJ, MacDonald HR (2004) Notch regulation of lymphocyte development and function. Nat Immunol 5(3):247–253

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan LE, Malter JS (1996) Turnover and translation of in vitro synthesized messenger RNAs in transfected, normal cells. J Biol Chem 271(33):19871–19876

    Article  CAS  PubMed  Google Scholar 

  • Ramdass B, Maliekal TT, Lakshmi S, Rehman M, Rema P, Nair P, Mukherjee G, Reddy BK, Krishna S, Radhakrishna Pillai M (2007) Coexpression of Notch1 and NF-kappaB signaling pathway components in human cervical cancer progression. Gynecol Oncol 104(2):352–361

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414

    Article  CAS  PubMed  Google Scholar 

  • Riddell SR, Appelbaum FR (2007) Graft-versus-host disease: a surge of developments. PLoS Med 4(7), e198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothenberg EV (2012) Transcriptional drivers of the T-cell lineage program. Curr Opin Immunol 24(2):132–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothenberg EV (2013) GATA-3 locks the door to the B-cell option. Blood 121(10):1673–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothenberg EV, Taghon T (2005) Molecular genetics of T cell development. Annu Rev Immunol 23:601–649

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg EV, Zhang J, Li L (2010) Multilayered specification of the T-cell lineage fate. Immunol Rev 238(1):150–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rtavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  Google Scholar 

  • Sabio G, Davis RJ (2014) TNF and MAP kinase signalling pathways. Semin Immunol 26(3):237–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccani S, Pantano S, Natoli G (2002) p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol 3(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Sakata D, Taniguchi H, Yasuda S, Adachi-Morishima A, Hamazaki Y, Nakayama R, Miki T, Minato N, Narumiya S (2007) Impaired T lymphocyte trafficking in mice deficient in an actin-nucleating protein, mDia1. J Exp Med 204(9):2031–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samira S, Ferrand C, Peled A, Nagler A, Tovbin Y, Ben-Hur H, Taylor N, Globerson A, Lapidot T (2004) Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice. Stem Cells 22(6):1085–1100

    Article  CAS  PubMed  Google Scholar 

  • Santaguida M, Schepers K, King B, Sabnis AJ, Forsberg EC, Attema JL, Braun BS, Passegue E (2009) JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15(4):341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite AB, Borson R, Tenen DG (1990) Regulation of the gene for CD34, a human hematopoietic stem cell antigen, in KG-1 cells. Blood 75(12):2299–2304

    CAS  PubMed  Google Scholar 

  • Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS, Largman C, Lawrence HJ, Humphries RK (1994) Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci U S A 91(25):12223–12227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM, Humphries RK (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9(14):1753–1765

    Article  CAS  PubMed  Google Scholar 

  • Schiedlmeier B, Santos AC, Ribeiro A, Moncaut N, Lesinski D, Auer H, Kornacker K, Ostertag W, Baum C, Mallo M, Klump H (2007) HOXB4’s road map to stem cell expansion. Proc Natl Acad Sci U S A 104(43):16952–16957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt TM, Zuniga-Pflucker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17(6):749–756

    Article  CAS  PubMed  Google Scholar 

  • Schmitt TM, de Pooter RF, Gronski MA, Cho SK, Ohashi PS, Zuniga-Pflucker JC (2004) Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol 5(4):410–417

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Phillips RA, Iscove NN, Egan SE (2000) Expression of notch receptors, notch ligands, and fringe genes in hematopoiesis. Exp Hematol 28(5):527–534

    Article  CAS  PubMed  Google Scholar 

  • Smits K, De Smedt M, Naessens E, De Smet G, Stove V, Taghon T, Plum J, Verhasselt B (2007) Tumor necrosis factor promotes T-cell at the expense of B-cell lymphoid development from cultured human CD34+ cord blood cells. Exp Hematol 35(8):1272–1278

    Article  CAS  PubMed  Google Scholar 

  • Spits H (2002) Development of alphabeta T cells in the human thymus. Nat Rev Immunol 2(10):760–772

    Article  CAS  PubMed  Google Scholar 

  • Staal FJ, Luis TC (2010) Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem 109(5):844–849

    CAS  PubMed  Google Scholar 

  • Taghon TN, David ES, Zuniga-Pflucker JC, Rothenberg EV (2005) Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev 19(8):965–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talvensaari K, Clave E, Douay C, Rabian C, Garderet L, Busson M, Garnier F, Douek D, Gluckman E, Charron D, Toubert A (2002) A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 99(4):1458–1464

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia LA, Pennica D, Goeddel DV (1993) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 268(25):18542–18548

    CAS  PubMed  Google Scholar 

  • Thompson PK, Zuniga-Pflucker JC (2011) On becoming a T cell, a convergence of factors kick it up a Notch along the way. Semin Immunol 23(5):350–359

    Article  CAS  PubMed  Google Scholar 

  • Tian B, Nowak DE, Brasier AR (2005) A TNF-induced gene expression program under oscillatory NF-kappaB control. BMC Genomics 6:137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ting CN, Olson MC, Barton KP, Leiden JM (1996) Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384(6608):474–478

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R (1999) The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 13(9):1203–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tydell CC, David-Fung ES, Moore JE, Rowen L, Taghon T, Rothenberg EV (2007) Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. J Immunol 179(1):421–438

    Article  CAS  PubMed  Google Scholar 

  • Van de Walle I, De Smet G, De Smedt M, Vandekerckhove B, Leclercq G, Plum J, Taghon T (2009) An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCR-gammadelta T cells. Blood 113(13):2988–2998

    Article  CAS  PubMed  Google Scholar 

  • Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, Thompson B, Spaulding C, Macaroun S, Alegre ML, Kee BL, Ferrando A, Miele L, Aifantis I (2007) Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 13(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, Kawamoto H (2008) Adult T-cell progenitors retain myeloid potential. Nature 452(7188):768–772

    Article  CAS  PubMed  Google Scholar 

  • Walker L, Carlson A, Tan-Pertel HT, Weinmaster G, Gasson J (2001) The notch receptor and its ligands are selectively expressed during hematopoietic development in the mouse. Stem Cells 19(6):543–552

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH (2006) Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer 118(8):1930–1936

    Article  CAS  PubMed  Google Scholar 

  • Weber BN, Chi AW, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O, Bhandoola A (2011) A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476(7358):63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weekx SF, Snoeck HW, Offner F, De Smedt M, Van Bockstaele DR, Nijs G, Lenjou M, Moulijn A, Rodrigus I, Berneman ZN, Plum J (2000) Generation of T cells from adult human hematopoietic stem cells and progenitors in a fetal thymic organ culture system: stimulation by tumor necrosis factor-alpha. Blood 95(9):2806–2812

    CAS  PubMed  Google Scholar 

  • Weerkamp F, Luis TC, Naber BA, Koster EE, Jeannotte L, van Dongen JJ, Staal FJ (2006a) Identification of Notch target genes in uncommitted T-cell progenitors: no direct induction of a T-cell specific gene program. Leukemia 20(11):1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Weerkamp F, van Dongen JJ, Staal FJ (2006b) Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 20(7):1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, Cui K, Kanno Y, Roh TY, Watford WT, Schones DE, Peng W, Sun HW, Paul WE, O'Shea JJ, Zhao K (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30(1):155–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss MJ, Orkin SH (1995) GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 23(2):99–107

    CAS  PubMed  Google Scholar 

  • Werner SL, Kearns JD, Zadorozhnaya V, Lynch C, O'Dea E, Boldin MP, Ma A, Baltimore D, Hoffmann A (2008) Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20. Genes Dev 22(15):2093–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Sharma A, Oh SY, Moon HG, Hossain MZ, Salay TM, Leeds KE, Du H, Wu B, Waterman ML, Zhu Z, Sen JM (2009) T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat Immunol 10(9):992–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV (2012) Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149(2):467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Xiu Y, Ashton J, Xing L, Morita Y, Jordan CT, Boyce BF (2012) Noncanonical NF-kappaB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions. Stem Cells 30(4):709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuniga-Pflucker JC (2004) Innovation—T-cell development made simple. Nat Rev Immunol 4(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Zuniga-Pflucker JC, Jiang D, Lenardo MJ (1995) Requirement for TNF-alpha and IL-1 alpha in fetal thymocyte commitment and differentiation. Science 268(5219):1906–1909

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Financiadora de Estudos e Projetos (FINEP), Brazil. JLSS is responsible for the conception and design, provision of study material or patients, collection and/or assembly of data, data analysis and interpretation, manuscript writing; LHBO for the provision of study material, manuscript writing; AGA, MDO, and PVBP for the collection and/or assembly of data; DTC and MAZ for the final approval of manuscript; and RAP for the conception and design, provision of study material or patients, collection and/or assembly of data, data analysis and interpretation, manuscript writing, and final approval of manuscript. This study was approved by the institutional Research Ethics Committee of Medical School of of Ribeirão Preto (FMRR-USP). Human umbilical cord blood (UCB) samples (approximately 90 mL/sample) were obtained after informed consent, at MATER Hospital (Ribeirão Preto, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josiane Lilian dos Santos Schiavinato.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

The action of the different drugs and signals in the context of the OP9-DL1 coculture system. The OP9-DL1 mouse stromal line expresses high levels of the Notch ligand DL-1. Upon binding of DL-1 to the Notch receptor expressed in cocultured human UCB CD34+ HSCs, the intracellular domain of Notch (NICD) is released (through the enzymatic action of the gamma-secretase complex) and translocates to the nucleus where it binds to its DNA binding partner CSL, recruiting additional transcriptional coactivators (such as the histone acetyltransferase p300) to specific gene regulatory regions, activating the transcription of targets genes. Soluble TNF-alpha binds to TNFR1 and, through adaptor proteins such as TRADD, TRAF2, and RIP1, induces multiple downstream signaling cascades, including IKK, JNK, ERK, and p38 MAPKs, leading to the activation of NF-kB and other transcription factors such as AP-1 (c-Jun and c-Fos), ATF2, and Elk1. Cycloheximide (CHX) blocks protein synthesis, allowing the distinction between primary effects (i.e., direct signaling downstream Notch and TNF, mediated by existing proteins) and secondary effects (i.e., mediated by de novo synthesized proteins). The gamma-secretase inhibitor DAPT blocks NICD formation, allowing the specific assessment of Notch signaling. HSC (hematopoietic stem cells), UCB (umbilical cord blood), DL-1 (Delta-like 1), TNF-α (tumor necrosis factor alpha), NICD (notch intra cellular domain), CHX (cycloheximide), DAPT (Notch gamma-secretase inhibitor), JNK (c-Jun N-terminal kinase), ERK (extracellular signal-regulated kinase), p38 MAPKs (p38 mitogen-activated protein kinases), CSL (CBF1/Su(H)/Lag-1), NF-kB (nuclear factor-kappaB), TRADD (TNFR1 associated death domain protein), TRAF2 (TNFR-associated factor 2), RIP (receptor interacting protein), TAK1 (TGF-β–activated kinase 1), IKK (IkB kinase complex). (GIF 127 kb)

High Resolution Image (TIF 335 kb)

Figure S2

Temporal evaluation of HOXB4. The HOXB4 transcriptional level analysis from human CD34+ HSC cocultured on OP9-GFP (control) or OP9-DL1cells for 36 h. Expression levels (relative to control OP9-GFP cocultures) were determined by quantitative real-time PCR analysis, using GAPDH as an endogenous control. These data are representative of two independent experiments. (GIF 20 kb)

High Resolution Image (TIF 831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Schiavinato, J.L., Oliveira, L.H.B., Araujo, A.G. et al. TNF-alpha and Notch signaling regulates the expression of HOXB4 and GATA3 during early T lymphopoiesis. In Vitro Cell.Dev.Biol.-Animal 52, 920–934 (2016). https://doi.org/10.1007/s11626-016-0055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0055-8

Keywords

Navigation