Skip to main content
Log in

In vitro neural differentiation of CD34 + stem cell populations in hair follicles by three different neural induction protocols

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Differentiation of hair follicle stem cells (HFSCs) into neurons and glial cells represents a promising cell-based therapy for neurodegenerative diseases. The hair follicle bulge area is reported as a putative source of new stem cell population for many years. In vitro studies have implicated neural differentiation of HFSCs. Here, we report the identification and purification of CD34 + cells from hair follicle by magnetic activated cell sorting (MACS). We next determined the cytotoxic effects of all-trans retinoic acid (RA) by using cell viability assays. Moreover, the neural differentiation potential of CD34 + cells was evaluated in the presence of RA, serum-free condition, and neural differentiation medium (NDM) treatments by using immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). Our results showed that the isolated CD34 + stem cells were 12% of the total cells in the bulge area, and the neural cells derived from the stem cells expressed nestin, microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP). Interestingly, all the neural induction media supported neuronal differentiation most effectively, but treatment with serum-free medium significantly increased the number of GFAP-positive glial cells. Moreover, increasing RA concentration (≥10 μM) leads to increased cell death in the cells, but a lower concentration of RA (1 μM) treatment results in a decrease in CD34-expressing stem cells. These findings show an instructive neuronal effect of three neural induction media in HFSCs, indicating the important role of this induction media in the specification of the stem cells toward a neural phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aihara Y, Hayashi Y, Hirata M, Ariki N, Shibata S, Nagoshi N, Nakanishi M, Ohnuma K, Warashina M, Michiue T, Uchiyama H, Okano H, Asashima M, Furue MK (2010) Induction of neural crest cells from mouse embryonic stem cells in a serum-free monolayer culture. Int J Dev Biol 54:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM (2005a) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amoh Y, Li L, Katsuoka K, Hoffman RM (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7:1865–1869

    Article  CAS  PubMed  Google Scholar 

  • Amoh Y, Li L, Katsuoka K, Hoffman RM (2009) Multipotent nestin-expressing hair follicle stem cells. J Dermatol 36:1–9

    Article  PubMed  Google Scholar 

  • Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM (2005b) Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534

  • Amoh Y, Li L, Yang M, Moossa AR, Katsuoka K, Penman S, Hoffman RM (2004) Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proc Natl Acad Sci U S A 101:13291–13295

  • Amoh Y, Mii S, Aki R, Hamada Y, Kawahara K, Hoffman RM, Katsuoka K (2012) Multipotent nestin-expressing stem cells capable of forming neurons are located in the upper, middle and lower part of the vibrissa hair follicle. Cell Cycle 11:3513–3517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bain G, Ray WJ, Yao M, Gottlieb DI (1996) Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun 223:691–694

    Article  CAS  PubMed  Google Scholar 

  • Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648

    Article  CAS  PubMed  Google Scholar 

  • Castro-Obregon S, Covarrubias L (1996) Role of retinoic acid and oxidative stress in embryonic stem cell death and neuronal differentiation. FEBS Lett 381:93–97

    Article  CAS  PubMed  Google Scholar 

  • Cho K, De Robertis EM (1990) Differential activation of Xenopus homeo box genes by mesoderm-inducing growth factors and retinoic acid. Genes Dev 4:1910–1916

    Article  CAS  PubMed  Google Scholar 

  • Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126:1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144

    Article  CAS  PubMed  Google Scholar 

  • El Seady R, Huisman MA, Löwik CW, Frijns JH (2008) Uncomplicated differentiation of stem cells into bipolar neurons and myelinating glia. Biochem Biophys Res Commun 376:358–362

    Article  PubMed  Google Scholar 

  • Esmaeilzade B, Nobakht M, Joghataei MT, Rahbar Roshandel N, Rasouli H, Samadi Kuchaksaraei A, Hosseini SM, Najafzade N, Asalgoo S, Hejazian LB, Moghani Ghoroghi F (2012) Delivery of epidermal neural crest stem cells (EPI-NCSC) to hippocamp in Alzheimer’s disease rat model. Iran Biomed J 16:1–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fisher GJ, Voorhees JJ (1996) Molecular mechanisms of retinoid actions in skin. FASEB J 10:1002–1013

    CAS  PubMed  Google Scholar 

  • Guan K, Chang H, Rolletschek A, Wobus AM (2001) Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res 305:171–176

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM (2006) The pluripotency of hair follicle stem cells. Cell Cycle 5:232–233

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RM (2007) The potential of nestin-expressing hair follicle stem cells in regenerative medicine. Expert Opin Biol Ther 7:289–291

    Article  CAS  PubMed  Google Scholar 

  • Hong HY, Varvayanis S, Yen A (2001) Retinoic acid causes MEK-dependent RAF phosphorylation through RARalpha plus RXR activation in HL-60 cells. Differentiation 68:55–66

    Article  CAS  PubMed  Google Scholar 

  • Huang E, Lian X, Chen W, Yang T, Yang L (2009) Characterization of rat hair follicle stem cells selected by vario magnetic activated cell sorting system. Acta Histochem Cytochem 42:129–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Josefsen D, Blomhoff HK, Lomo J, Blystad AK, Smeland EB (1999) Retinoic acid induces apoptosis of human CD34+ hematopoietic progenitor cells: involvement of retinoic acid receptors and retinoid X receptors depends on lineage commitment of the hematopoietic progenitor cells. Exp Hematol 27:642–653

    Article  CAS  PubMed  Google Scholar 

  • Kamimura J, Lee D, Baden HP, Brissette J, Dotto GP (1997) Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiations potential. J Invest Dermatol 109:534–540

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Rochat A, Barrandon Y (1993) Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc Natl Acad Sci U S A 90:7391–7395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lenoir MC, Bernard BA, Pautrat G, Darmon M, Shroot B (1988) Outer root sheath cells of human hair follicle is able to regenerate a fully differentiated epidermis in vitro. Dev Biol 130:610–620

    Article  CAS  PubMed  Google Scholar 

  • Levesque JP (2013) A niche in a dish: pericytes support HSC. Blood 121:2816–2818

    Article  CAS  PubMed  Google Scholar 

  • Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A 100:9958–9961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu F, Zhang C, Hoffman RM (2014) Nestin-expressing stem cells from the hair follicle can differentiate into motor neurons and reduce muscle atrophy after transplantation to injured nerves. Tissue Eng Part A 20:656–662

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mammadov B, Karakas N, Isik S (2011) Comparison of long-term retinoic acid-based neural induction methods of bone marrow human mesenchymal stem cells. In Vitro Cell Dev Biol Anim 47:484–491

    Article  CAS  PubMed  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002

    PubMed Central  PubMed  Google Scholar 

  • Mehta K, McQueen T, Neamati N, Collins S, Andreeff M (1996) Activation of retinoid receptors RAR alpha and RXR alpha induces differentiation and apoptosis, respectively, in HL-60 cells. Cell Growth Differ 7:179–186

    CAS  PubMed  Google Scholar 

  • Mignone JL, Roig-Lopez JL, Fedtsova N, Schones DE, Manganas LN, Maletic-Savatic M, Keyes WM, Mills AA, Gleiberman A, Zhang MQ, Enikolopov G (2007) Neural potential of a stem cell population in the hair follicle. Cell Cycle 6:2161–2170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417

    Article  CAS  PubMed  Google Scholar 

  • Myung P, Ito M (2012) Dissecting the bulge in hair regeneration. J Clin Invest 122:448–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Najafzadeh N, Nobakht M, Pourheydar B, Golmohammadi MG (2013) Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury. Neural Regen Res 8:3365

    PubMed Central  PubMed  Google Scholar 

  • Nestor MW, Paull D, Jacob S, Sproul AA, Alsaffar A, Campos BA, Noggle SA (2013) Differentiation of serum-free embryoid bodies from human induced pluripotent stem cells into networks. Stem Cell Res 10:454–463

    Article  CAS  PubMed  Google Scholar 

  • Nobakht M, Najafzadeh N, Safari M, Rahbar Roshandel N, Delaviz H, Joghataie MT, Bakhtiyari M, Asalgoo S, Safar F (2009) Bulge cells of rat hair follicles: isolation, cultivation morphological and biological features. Yakhteh Med J 12:51–58

    Google Scholar 

  • Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, Brady JN, Udey MC, Vogel JC (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116:249–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245

    Article  CAS  PubMed  Google Scholar 

  • Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH, Ha KS, Walton N, Lahn BT (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28:2162–2171

    Article  CAS  PubMed  Google Scholar 

  • Poblet E, Jimenez F, Godinez JM, Pascual-Martin A, Izeta A (2006) The immunohistochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clin Exp Dermatol 31:807–812

    Article  CAS  PubMed  Google Scholar 

  • Reali C, Scintu F, Pillai R, Cabras S, Argiolu F, Ristaldi MS, Sanna MA, Badiali M, Sogos V (2006) Differentiation of human adult CD34+ stem cells into cells with a neural phenotype: role of astrocytes. Exp Neurol 197:399–406

    Article  CAS  PubMed  Google Scholar 

  • Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiz I, Altaba A, Jessell TM (1991) Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112:945–958

    Google Scholar 

  • Schulz TC, Noggle SA, Palmarini GM, Weiler DA, Lyons IG, Pensa KA, Meedeniya AC, Davidson BP, Lambert NA, Condie BG (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22:1218–1238

    Article  CAS  PubMed  Google Scholar 

  • Sieber-Blum M, Grim M (2004) The adult hair follicle: cradle for pluripotent neural crest stem cells. Birth Defects Res C Embryo Today 72:162–172

    Article  CAS  PubMed  Google Scholar 

  • Sieber-Blum M, Grim M, Hu YF, Szeder V (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231:258–269

    Article  CAS  PubMed  Google Scholar 

  • Sieber-Blum M, Schnell L, Grim M, Hu YF, Schneider R, Schwab ME (2006) Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci 32:67–81

    Article  CAS  PubMed  Google Scholar 

  • Sive HL, Cheng PF (1991) Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev 5:1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Solmesky L.; Lefler S.; Jacob-Hirsch J.; Bulvik S.; Rechavi G.; Weil M. Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific molecules. PLoS One. 5; 2010.

  • Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, Tennant RW (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120:501–511

    Article  CAS  PubMed  Google Scholar 

  • Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78

    Article  CAS  PubMed  Google Scholar 

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Varani J, Nickoloff BJ, Dixit VM, Mitra RS, Voorhees JJ (1989) All-trans retinoic acid stimulates growth of adult human keratinocytes cultured in growth factor-deficient medium, inhibits production of thrombospondin and fibronectin, and reduces adhesion. J Invest Dermatol 93:449–454

    Article  CAS  PubMed  Google Scholar 

  • Warrell RP Jr, Frankel SR, Miller WH Jr, Scheinberg DA, Itri LM, Hittelman WN, Vyas R, Andreeff M, Tafuri A, Jakubowski A et al (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324:1385–1393

    Article  PubMed  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  CAS  PubMed  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  CAS  PubMed  Google Scholar 

  • Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69:908–917

    Article  CAS  PubMed  Google Scholar 

  • Yen A, Varvayanis S, Smith JL, Lamkin TJ (2006) Retinoic acid induces expression of SLP-76: expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/G0 arrest of HL-60 cells. Eur J Cell Biol 85:117–132

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Ardabil University of Medical Sciences (Ardabil, Iran, No. 89350). The authors also wish to thank Dr Shahab Bohlooli for providing useful equipment.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nowruz Najafzadeh.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafzadeh, N., Sagha, M., Heydari Tajaddod, S. et al. In vitro neural differentiation of CD34 + stem cell populations in hair follicles by three different neural induction protocols. In Vitro Cell.Dev.Biol.-Animal 51, 192–203 (2015). https://doi.org/10.1007/s11626-014-9818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9818-2

Keyword

Navigation