Skip to main content

Advertisement

Log in

Characterization and differentiation potential of rabbit mesenchymal stem cells for translational regenerative medicine

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) derived from the adult bone marrow are multipotent stem cells that can give rise to lineages of bone, cartilage, muscle, fat, and others. The rabbit is a common preclinical model used for cardiovascular and orthopaedic applications. MSCs derived from the rabbit whole bone marrow are routinely investigated in these models for regenerative medicine applications. However, rabbit MSCs (rbMSCs) have not been extensively characterized in terms of immunophenotypic characteristics and differentiation potential and more specifically, in comparison to human MSCs (hMSCs). This study examined rbMSCs' surface antigens as well as their multipotent differentiation potential. In addition, the transduction efficiency of rbMSCs using a lentiviral vector with red fluorescent protein (RFP) as a method for labeling the cells for in vitro and in vivo use was also examined. RbMSCs were positive for CD44 and CD29 and negative for CD45 and CD14, which is similar to hMSCs, but rbMSCs did not express CD90. RbMSCs also expressed the pluripotent transcription factor, Sox2. The rbMSCs at early passages differentiated along the osteoblastic, chondrocytic, and adipocytic lineages. However, quantitative analyses demonstrated lower levels of differentiation markers for rabbit cells as compared to human cells. Transduction efficiency of 90.5% was observed for rbMSC transfected with RFP. Transduced cells also retained their osteogenic potential, but proliferation was reduced in comparison to nontransduced cells. This study demonstrates that MSCs isolated from the rabbit bone marrow have differences from human cells and should be considered when using rbMSCs in preclinical models for MSC regenerative medicine or tissue engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  • Ahmadbeigi N.; Shafiee A.; Seyedjafari E.; Gheisari Y.; Vassei M.; Amanpour S.; Amini S.; Bagherizadeh I.; Soleimani M. Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Proliferation 44: 67–74; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Arinzeh T. L. Mesenchymal stem cells for bone repair: preclinical studies and potential orthpedic applications. Foot and Ankle Clinics 10: 651–665; 2005.

    Article  PubMed  Google Scholar 

  • Baksh D.; Yao R.; Tuan R. S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25: 1384–1392; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Basu-Roy U.; Ambrosetti D.; Favaro R.; Nicolis S. K.; Mansukhani A.; Basilico C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death and Differentiation 17: 1345–1353; 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boo L.; Selvaratnam L.; Tai C. C.; Ahmad T. S.; Kamarul T. Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. Journal of Materials Science: Materials in Medicine 22: 1343–1356; 2011.

    PubMed  CAS  Google Scholar 

  • Campioni D.; Rizzo R.; Stignani M.; Moretti S.; Russo A.; Bagnara G. P.; Bonsi L.; Alviano F.; Lanzoni G.; Cuneo A.; Baricordi O. R.; Lanza F. A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytometry Part B: Clinical Cytometry 76B: 225–230; 2009.

    Article  CAS  Google Scholar 

  • Chen L.; Tredget E. E.; Liu C.; Wu Y. Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PloS One 4: e7119; 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dennis J. E.; Haynesworth S. E.; Young R. G.; Caplan A. I. Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplantation 1: 23–32; 1992.

    PubMed  CAS  Google Scholar 

  • Falanga V.; Iwamoto S.; Chartier M.; Yufit T.; Butmarc J.; Kouttab N.; Shrayer D.; Carson P. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Engineering 13: 1299–1312; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Fisher JP, Mikos AG. Tissue Engineering. CRC Press, Boca Raton; 2007.

  • Friedenstein A.; Chailakhyan R.; Gerasimov U. V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20: 263–72; 1987.

    PubMed  CAS  Google Scholar 

  • Greco S. J.; Liu K.; Rameshwar P. Functional similarities among genes regulated by oct-4 in human mesenchymal and embryonic stem cells. Stem Cells 25: 3143–3154; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hare J. M.; Fishman J. E.; Gerstenblith G.; DiFede Velazquez D. L.; Zambrano J. P.; Suncion V. Y.; Tracy M.; Ghersin E.; Johnston P. V.; Brinker J. A.; Breton E.; Davis-Sproul J.; Schulman I. H.; Byrnes J.; Mendizabal A. M.; Lowery M. H.; Rouy D.; Altman P.; Wong Po Foo C.; Ruiz P.; Amador A.; Da Silva J.; McNiece I. K.; Heldman A. W. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. Journal of the American Medical Association 308: 2369–2379; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Hare J. M.; Traverse J. H.; Henry T. D.; Dib N.; Strumpf R. K.; Schulman S. P.; Gerstenblith G.; DeMaria A. N.; Denktas A. E.; Gammon R. S.; Hermiller J. B.; Reisman M. A.; Schaer G. L.; Sherman W. A randomized, double-blind, placeo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology 54: 2277–2286; 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Haynesworth S.; Baber M.; Caplan A. Cell surface antigens on human marrow-derived mesenchymal stem cells are detected by monoclonal antibodies. J Cell Physiol 138: 8–16; 1992a.

    Google Scholar 

  • Haynesworth S. E.; Goshima J.; Goldber V. M.; Caplan A. I. Characterization of cells with osteogenic potential from human marrow. Bone 13: 81–88; 1992b.

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal N.; Haynesworth S. E.; Caplan A. I.; Bruder S. P. Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64: 295–312; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kadiyala S.; Jaiswal N.; Bruder S. P. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Engineering 3: 173–185; 1997.

    Article  Google Scholar 

  • Lapi S.; Nocchi F.; Lamanna R.; Passeri S.; Iorio M.; Paolicchi A.; Urciuoli P.; Coli A.; Francesca A.; Miragliotta V.; Giannessi E.; Stornelli M. R.; Vanacore R.; Stampacchia G.; Pisani G.; Borghetti L.; Scatena F. Different media and supplements modulate the clonogenic and expansion properties of rabbit bone marrow mesenchymal stem cells. BMC Research Notes 1: 53; 2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Z. H.; Liao W.; Cui X. L.; Zhao Q.; Liu M.; Chen Y. H.; Liu T. S.; Liu N. L.; Wang F.; Yi Y.; Shao N. S. Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. International Journal of Medical Sciences 8: 74–83; 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin W. P.; Chen X. W.; Zhang L. Q.; Wu C. Y.; Huang Z. D.; Lin J. H. Effect of neuroglobin genetically modified bone marrow mesenchymal stem cells transplantation on spinal cord injury rabbits. PloS One 8: e63444; 2013.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu P.; Kalajzic I.; Stover M. L.; Rowe D. W.; Lichtler A. C. Human bone marrow stromal cells are efficiently transduced by vesicular stomatitis virus-pseudotyped retrovectors without affecting subsequent osteoblastic differentiation. Bone 29: 331–335; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Livingston T. L.; Peter S. P.; Archambault M.; Van Den Bos C.; Gorden S.; Kraus K.; Kadiyala S.; Smith A. Allogeneic stem cells regenerate a critically-sized canine segmental gap. Journal of Bone and Joint Surgery American 85-A: 1927–1935; 2003.

    Google Scholar 

  • Lois C.; Hong E. J.; Pease S.; Brown E. J.; Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295: 868–872; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Mapara M.; Thomas B. S.; Bhat K. M. Rabbits as an animal model for experimental research. Dental Research Journal 9: 111–118; 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin I.; Baldomero H.; Bocelli-Tyndall C.; Passweq J.; Saris D.; Tyndall A. The survey on cellular and engineered tissue therapies in Europe in 2010. Tissue Engineering Part A 18: 2268–2279; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Nesselmann C.; Ma N.; Bieback K.; Wagner W.; Ho A.; Konttinen Y. T.; Zhang H.; Hinescu M. E.; Steinhoff G. Mesenchymal stem cells and cardiac repair. Journal of Cellular and Molecular Medicine 12: 1795–1810; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi S.; Ohgushi H.; Kitamura S.; Nagaya N. Mesenchymal stem cells for the treatment of heart failure. International Journal of Hematology 86: 17–21; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Peister A.; Mellad J. A.; Larson B. L.; Hall B. M.; Gibson L. F.; Prockop D. J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103: 1662–1668; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rege T. A.; Hagwood J. S. Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochimica et Biophysica Acta - Molecular Cell Research 1763: 991–999; 2006.

    Article  CAS  Google Scholar 

  • Rickard D. J.; Sullivan T. A.; Shenker B. J.; Leboy P. S.; Kazhdan I. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethason and BMP-2. Dev Bio 161: 218–228; 1994.

    Article  Google Scholar 

  • Shanmugasundaram S.; Chaudhry H.; Livingston A. T. Microscale versus nanoscale scaffold architectures for mesenchymal stem cell chondrogenesis. Tisue Engineering: Part A 17: 831–840; 2011.

    Article  CAS  Google Scholar 

  • Song I. H.; Caplan A. I.; Dennis J. E. Dexamethasone inhibition of confluence-induced apoptosis in human mesenchymal stem cells. Journal of Orthopaedic Research 27: 216–221; 2009.

    Article  PubMed  Google Scholar 

  • Van Damme A.; Thorrez L.; Vandenburgh H.; Eyckmans J.; Dell'Accio F.; Luyten F.; Lillicrap D.; Collen D.; VandenDriessche T.; Chuah M. K. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 24: 896–907; 2006.

    Article  PubMed  Google Scholar 

  • Xian C. J.; Foster B. K. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Current Stem Cell Research and Therapy 1: 213–229; 2007.

    Article  Google Scholar 

  • Xie H.; Yang F.; Deng L.; Luo J.; Qin T.; Li X.; Zhou G. Q.; Yang Z. The performance of a bone-derived scaffold material in the repair of critical bone defects in a rhesus monkey model. Biomaterials 28: 3314–3324; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yanni A. The laboratory rabbit: an animal model of atherosclerosis research. Laboratory Animal 38: 246–256; 2004.

    Article  CAS  Google Scholar 

  • Zhou H.; Guo M.; Bian C.; Sun Z.; Yang Z.; Zeng Y.; Ai H.; Zhao R. C. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biology of Blood and Marrow Transplantation 16: 403–412; 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Kinetics Concept, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Livingston Arinzeh.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtina, A., Tohfafarosh, M., Lichtler, A. et al. Characterization and differentiation potential of rabbit mesenchymal stem cells for translational regenerative medicine. In Vitro Cell.Dev.Biol.-Animal 50, 251–260 (2014). https://doi.org/10.1007/s11626-013-9702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9702-5

Keywords

Navigation