Skip to main content
Log in

Fisetin attenuates hydrogen peroxide-induced cell damage by scavenging reactive oxygen species and activating protective functions of cellular glutathione system

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) can induce cell damage by generating reactive oxygen species (ROS), resulting in DNA damage and cell death. The aim of this study is to elucidate the protective effects of fisetin (3,7,3′,4′,-tetrahydroxy flavone) against H2O2-induced cell damage. Fisetin reduced the level of superoxide anion, hydroxyl radical in cell free system, and intracellular ROS generated by H2O2. Moreover, fisetin protected against H2O2-induced membrane lipid peroxidation, cellular DNA damage, and protein carbonylation, which are the primary cellular outcomes of H2O2 treatment. Furthermore, fisetin increased the level of reduced glutathione (GSH) and expression of glutamate-cysteine ligase catalytic subunit, which is decreased by H2O2. Conversely, a GSH inhibitor abolished the cytoprotective effect of fisetin against H2O2-induced cells damage. Taken together, our results suggest that fisetin protects against H2O2-induced cell damage by inhibiting ROS generation, thereby maintaining the protective role of the cellular GSH system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Ahlenstiel T.; Burkhardt G.; Köhler H.; Kuhlmann M. K. Bioflavonoids attenuate renal proximal tubular cell injury during cold preservation in Euro-Collins and University of Wisconsin solutions. Kidney Int. 63: 554–563; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Arai Y.; Watanabe S.; Kimira M.; Shimoi K.; Mochizuki R.; Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 130: 2243–2250; 2000.

    CAS  PubMed  Google Scholar 

  • Beecher G. R. Overview of dietary flavonoids: nomenclature, occurrence and intake. J. Nutr. 133: 3248S–3254S; 2003.

    CAS  PubMed  Google Scholar 

  • Beutler E. Nutritional and metabolic aspects of glutathione. Annu. Rev. Nutr. 9: 287–302; 1989.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael J.; DeGraff W. G.; Gazdar A. F.; Minna J. D.; Mitchell J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936–941; 1987.

    CAS  PubMed  Google Scholar 

  • Chamberlain C. G.; Mansfield K. J.; Cerra A. Glutathione and catalase suppress TGFbeta-induced cataract-related changes in cultured rat lenses and lens epithelial explants. Mol. Vis. 15: 895–905; 2009.

    CAS  PubMed  Google Scholar 

  • Chevez-Barrios P.; Wiseman A. L.; Rojas E.; Ou C. N.; Lieberman M. W. Cataract development in gamma-glutamyl transpeptidase-deficient mice. Exp. Eye Res. 71: 575–582; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Denisova N. A.; Cantuti-Castelvetri I.; Hassan W. N.; Paulson K. E.; Joseph J. A. Role of membrane lipids in regulation of vulnerability to oxidative stress in PC12 cells: implication for aging. Free Radic. Biol. Med. 30: 671–678; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Di Pietro M.; Filardo S.; De Santis F.; Sessa R. Chlamydia pneumoniae infection in atherosclerotic lesion development through oxidative stress: a brief overview. Int. J. Mol. Sci. 14: 15105–5120; 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dizdaroglu M.; Jaruga P.; Birincioglu M.; Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32: 1102–1115; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Dukhande V. V.; Kawikova I.; Bothwell A. L.; Lai J. C. Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis 18: 702–712; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Fotsis T.; Pepper M. S.; Montesano R.; Aktas E.; Breit S.; Schweigerer L.; Rasku S.; Wähälä K.; Adlercreutz H. Phytoestrogens and inhibition of angiogenesis. Baillieres Clin. Endocrinol. Metab. 12: 649–666; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Thomson C.; Gupta R.; Tongkao-on W.; Ryan A.; Halliday G. M.; Mason R. S. 1α,25 Dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem. Photobiol. Sci. 11: 1837–1847; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Guaiquil V. H.; Vera J. C.; Golde D. W. Mechanism of vitamin C inhibition of cell death induced by oxidative stress in glutathione-depleted HL-60 cells. J. Biol. Chem. 276: 40955–40961; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Guajardo-Flores D.; Serna-Saldívar S. O.; Gutiérrez-Uribe J. A. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem. 141: 1497–1503; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton R. T.; Bhattacharya A.; Walsh M. E.; Shi Y.; Wei R.; Zhang Y.; Rodriguez K. A.; Buffenstein R.; Chaudhuri A. R.; Van Remmen H. Elevated protein carbonylation, and misfolding in sciatic nerve from db/db and Sod1(−/−) mice: plausible link between oxidative stress and demyelination. PLoS One 8: e65725; 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanneken A.; Lin F. F.; Johnson J.; Maher P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress induced death. Invest. Ophthalmol. Vis. Sci. 47: 3164–3177; 2006.

    Article  PubMed  Google Scholar 

  • Huang C. S.; Anderson M. E.; Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J. Biol. Chem. 268: 20578–20583; 1993.

    CAS  PubMed  Google Scholar 

  • Ishige K.; Schubert D.; Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 30: 433–446; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Jezierska-Drutel A.; Rosenzweig S. A.; Neumann C. A. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res. 119: 107–125; 2013.

    CAS  PubMed  Google Scholar 

  • Kohno M.; Mizuta Y.; Kusai M.; Masumizu T.; Makino K. Measurements of superoxide anion radical and superoxide anion scavenging activity by electron spin resonance spectroscopy coupled with DMPO spin trapping. Bull. Chem. Soc. Jpn. 67: 1085–1090; 1994.

    Article  CAS  Google Scholar 

  • Kruk I.; Bozdağ-Dündar O.; Ertan R.; Aboul-Enein H. Y.; Michalska T. Hydroxyl and superoxide radical scavenging abilities of chromonyl-thiazolidine-2,4-dione compounds. Luminescence 24: 96–101; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Krzywanski D. M.; Dickinson D. A.; Iles K. E.; Wigley A. F.; Franklin C. C.; Liu R. M.; Kavanagh T. J.; Forman H. J. Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch. Biochem. Biophys. 423: 116–125; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Liu J.; Shen H. M.; Ong C. N. Role of intracellular thiol depletion, mitochondrial dysfunction, and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life Sci. 69: 1833–1850; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Maher P.; Akaishi T.; Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc. Natl. Acad. Sci. U S A 103: 16568–16573; 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mary V. S.; Theumer M. G.; Arias S. L.; Rubinstein H. R. Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 302: 299–307; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Middleton Jr. E.; Kandaswami C.; Theoharides T. C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52: 673–751; 2000.

    CAS  PubMed  Google Scholar 

  • Morris D.; Khurasany M.; Nguyen T.; Kim J.; Guilford F.; Mehta R.; Gray D.; Saviola B.; Venketaraman V. Glutathione and infection. Biochim. Biophys. Acta. 1830: 3329–3349; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T.; Yamada M.; Osawa T.; Kawakishi S. Suppression of active oxygen-induced cytotoxicity by flavonoids. Biochem. Pharmacol. 45: 265–267; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen C.; Teo J. L.; Matsuda A.; Eguchi M.; Chi E. Y.; Henderson Jr. W. R.; Kahn M. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma. Proc. Natl. Acad. Sci. USA 100: 1169–1173; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Okimoto Y.; Watanabe A.; Niki E.; Yamashita T.; Noguchi N. A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474: 137–140; 2000.

    Article  CAS  Google Scholar 

  • Piao M. J.; Kim K. C.; Chae S.; Keum Y. S.; Kim H. S.; Hyun J. W. Protective effect of fisetin (3,7,3',4'-tetrahydroxyflavone) against γ-irradiation-induced oxidative stress and cell damage. Biomol. Ther. 21: 210–215; 2013.

    Article  CAS  Google Scholar 

  • Rajagopalan R.; Ranjan S. K.; Nair C. K. Effect of vinblastine sulfate on gamma radiation-induced DNA single-strand breaks in murine tissues. Mutat. Res. 536: 15–25; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz A. R.; Schmaldienst S.; Stuhlmeier K. M.; Chen W.; Knapp W.; Zlabinger G. J. A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescein-diacetate. J. Immunol. Meth. 156: 39–45; 1992.

    Article  CAS  Google Scholar 

  • Singh N. P. Microgels for estimation of DNA strand breaks, DNA protein cross links and apoptosis. Mutat. Res. 455: 111–127; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Sung B.; Pandey M. K.; Aggarwal B. B. Fisetin, an inhibitor of cyclindependent kinase 6, down-regulates nuclear factor-kappaBregulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptorinteracting protein-regulated Ikappa Balpha kinase activation. Mol. Pharmacol. 71: 1703–1714; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Tuder R. M.; Zhen L.; Cho C. Y.; Taraseviciene-Stewart L.; Kasahara Y.; Salvemini D.; Voelkel N. F.; Flores S. C. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell. Mol. Biol. 29: 88–97; 2003.

    Article  CAS  PubMed  Google Scholar 

  • van Acker S. A.; de Groot M. J.; van den Berg D. J.; Tromp M. N.; Donné-Op den Kelder G.; van der Vijgh W. J.; Bast A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 9: 1305–1312; 1996.

    Article  PubMed  Google Scholar 

  • von Montfort C.; Matias N.; Fernandez A.; Fucho R.; Conde de la Rosa L.; Martinez-Chantar M. L.; Mato J. M.; Machida K.; Tsukamoto H.; Murphy M. P.; Mansouri A.; Kaplowitz N.; Garcia-Ruiz C.; Fernandez-Checa J. C. Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. J. Hepatol. 57: 852–859; 2012.

    Article  Google Scholar 

  • Wang C. H.; Wu S. B.; Wu Y. T.; Wei Y. H. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp. Biol. Med. 238: 450–460; 2013.

    Article  Google Scholar 

  • Wang Z. H.; Kang K. A.; Zhang R.; Piao M. J.; Jo S. H.; Kim J. S.; Kang S. S.; Lee J. S.; Park D. H.; Hyun J. W. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environ. Toxicol. Pharmacol. 29: 12–18; 2010.

    Article  PubMed  Google Scholar 

  • Wätjen W.; Michels G.; Steffan B.; Niering P.; Chovolou Y.; Kampkötter A.; Tran-Thi Q. H.; Proksch P.; Kahl R. Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. J. Nutr. 135: 525–531; 2005.

    PubMed  Google Scholar 

  • Yang P.; He X. Q.; Peng L.; Li A. P.; Wang X. R.; Zhou J. W.; Liu Q. Z. The role of oxidative stress in hormesis induced by sodium arsenite in human embryo lung fibroblast (HELF) cellular proliferation model. J. Toxicol. Environ. Health A 70: 976–983; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Zbarsky V.; Datla K. P.; Parkar S.; Rai D. K.; Aruoma O. I.; Dexter D. T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic. Res. 39: 1119–1125; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R.; Kang K. A.; Kang S. S.; Park J. W.; Hyun J. W. Morin (2′,3,4′,5,7-pentahydroxyflavone) protected cells against γ-radiation-induced oxidative stress. Basic Clin. Pharmacol. Toxicol. 108: 63–72; 2011a.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R.; Lee I. K.; Piao M. J.; Kim K. C.; Kim A. D.; Kim H. S.; Chae S.; Kim H. S.; Hyun J. W. Butin (7,3′,4′-Trihydroxydihydroflavone) reduces oxidative stress-induced cell death via inhibition of the mitochondria-dependent apoptotic pathway. Int. J. Mol. Sci. 12: 3871–3887; 2011b.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou H. G.; Liu L.; Zhang Y.; Huang Y. Y.; Tao Y. H.; Zhang S.; Su J. J.; Tang Y. P.; Guo Z. L.; Hu R. M.; Dong Q. Glutathione prevents free fatty acids-induced oxidative stress and apoptosis in human brain vascular endothelial cells through Akt pathway. CNS Neurosci. Ther. 19: 252–261; 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2010042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Won Hyun.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, K.A., Piao, M.J., Kim, K.C. et al. Fisetin attenuates hydrogen peroxide-induced cell damage by scavenging reactive oxygen species and activating protective functions of cellular glutathione system. In Vitro Cell.Dev.Biol.-Animal 50, 66–74 (2014). https://doi.org/10.1007/s11626-013-9681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9681-6

Keywords

Navigation