Skip to main content
Log in

Change in lipoperoxidation but not in scavenging enzymes activity during polyamine embryoprotection in rat embryo cultured in hyperglycemic media

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

DM1 complicated with pregnancy is the cause of neonatal malformations and low-for-gestational-age neonates. With the use of the whole-embryo culture system, it has been demonstrated that high glucose causes embryo dysmorphogenesis. Previously, our group has found that spermidine or spermine addition reverts almost fully the severity and frequency of dysmorphogenesis, whereas the effect of arginine and putrescine it is only partial. A hypothesis for polyamine mechanism is the amelioration of oxidative stress caused by high glucose. The purpose of this work was to evaluate the effect of polyamines over the activity of scavenging enzymes and lipoperoxidation in whole-embryo rat in culture. Post-implantation (gestational day 10.5) rat embryos were cultured for 24 h in normal medium or hyperglycemic medium, alone or supplemented with l-arginine or polyamine. Embryos were recovered and visualized, and morphologic parameters were registered. Cultured embryos were homogenized, and superoxide dismutase and glutathione-reductase activities, as well as lipoperoxidation, were measured. The activity of superoxide dismutase and glutathione peroxidase were not affected by the treatment, but lipoperoxidation was increased in embryos cultured in hyperglycemic medium; spermidine or spermine supplementation restore lipoperoxidation to near-normal values, and putrescine and l-arginine reverts only partially the glucose effect. Taken together, these results pointed out that spermidine and spermine embryoprotection could be mediated by direct antioxidant activity. However, further studies are needed to support this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Abramov J. P.; Wells P. G. Embryonic catalase protects against endogenous and phenytoin-enhanced DNA oxidation and embryopathies in acatalasemic and human catalase-expressing mice. FASEB J 25: 2188–2200; 2011a.

    Article  PubMed  CAS  Google Scholar 

  • Abramov J. P.; Wells P. G. Embryoprotective role of endogenous catalase in acatalasemic and human catalase-expressing mouse embryos exposed in culture to developmental and phenytoin-enhanced oxidative stress. Toxicol Sci 120: 428–438; 2011b.

    Article  PubMed  CAS  Google Scholar 

  • Aebi H. E. Oxidoreductases acting on groups other than CHOH. 3.9 Catalase: hydrogen-peroxidase: hydrogen-peroxidase oxidoreductase E.C. 1.11.1.6. In: Bergmeyer H. U. (ed) Methods of enzymatic analysis, vol. 3. Weinheim, Verlag Chemie, pp 273–286; 1983.

    Google Scholar 

  • Beauchamp C.; Fridovich I. Superoxide dismutase: improved assays and assay aplicable to acrylamide gels. Analyt Biochem 44: 276–287; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Bellé N. A. V.; Dalmolin G. D.; Fonini G.; Rubin M. A.; Rocha J. B. T. Polyamines reduces lipid peroxidation induced by different pro-oxidant agents. Brain Res 1008: 245–251; 2004.

    Article  PubMed  Google Scholar 

  • Cederberg J.; Eriksson U. H. Decreased catalase activity in malformation-prone embryos of diabetic rats. Teratology 56: 350–357; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cederberg J.; Eriksson U. H. Antioxidative treatment of pregnant diabetic rats diminishes embryonic dysmorphogenesis. Birth Def Res (Part A) 73: 498–505; 2005.

    Article  CAS  Google Scholar 

  • Cederberg J.; Galli J.; Holger L.; Eriksson U. Increased mRNA levels of Mn-SOD and catalase in embryos of diabetic rats from a malformation-resistant strain. Diabetes 49: 101–107; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cederberg J.; Simán C. M.; Eriksson U. J. Combined treatment with vitamin E and vitamin C decreases oxidative stress and improves fetal outcome in experimental diabetic pregnancy. Pediatr Res 49: 755–762; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Chirino-Galindo G.; Baiza-Gutman L. A.; Barrera-Escorcia E.; Palomar-Morales M. Polyamines protect rat embryo in vitro from high glucose-induced developmental delay and dysmorphogenesis. Birth Def Res (Part B) 86: 58–64; 2009.

    Article  CAS  Google Scholar 

  • Das K. C.; Misra H. P. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262: 127–133; 2004.

    Article  PubMed  CAS  Google Scholar 

  • El-Bassiouni E. A.; Helmy M. H.; Rawash N. A.; El-Zoghby S. M.; Kamel M. A. E. Rayah ANA. Embryopathy in experimental diabetic gestation: assessment of oxidative stress and antioxidant defense. Br J Biomed Sci 62: 71–76; 2005.

    PubMed  CAS  Google Scholar 

  • Forsberg H.; Borg L. A.; Cagliero E.; Eriksson U. J. Altered levels of scavenging enzymes in embryos subjected to a diabetic environment. Free Radic Res 24: 451–459; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Fozard J. R.; Prat M. L.; Nellikunja J. P.; Grove J. Inhibition of murine embryonic development by α-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase. Eur J Pharmacol 65: 379–391; 1980a.

    Article  PubMed  CAS  Google Scholar 

  • Fozard J. R.; Prat M. L.; Prakash N. J.; Grove J.; Schechter P. J.; Sjoerdsma A.; Koch-Weser J. L-Ornithine decarboxylase: an essential role in early mammalian embryogenesis. Science 208: 505–509; 1980b.

    Article  PubMed  CAS  Google Scholar 

  • Fujinaga M.; Baden J. M. Variation in development of rat embryos at the presomite period. Teratology 45: 661–670; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Grassilli E.; Desiderio M. A.; Bellesia E.; Salomoni P.; Benatti F.; Franceschi C. Is polyamine decrease a common feature of apoptosis? Evidence from γ rays- and heat shock induced cell death. Biochem Biophys Res Commun 216: 708–714; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Guérin P.; Mouatassim S. E.; Ménézo Y. Oxidative stress and protection against reactive species in the pre-implantation embro and its surroundings. Hum Reprod Upd 7: 175–189; 2001.

    Article  Google Scholar 

  • Ha H. A.; Sirisoma N. S.; Kuppusamy P.; Zweier J. L.; Woster P. M.; Casero Jr. R. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci 95: 11140–11145; 2006.

    Article  Google Scholar 

  • Klug S.; Lewandowski C.; Neubert D. Modification and standardization of the culture of early postimplantation embryos for toxicological studies. Arch Toxicol 58: 84–88; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H.; Rosebrough N. J.; Farr A. L.; Randall R. J. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  • Mannen C. A.; Hood R. D.; Farina J. Ornithine decarboxylase inhibitors and fetal growth retardation in mice. Teratology 28: 237–242; 1983.

    Article  Google Scholar 

  • Marx M.; Trittenwein G.; Aufricht C.; Hoeger H.; Lubec B. Agmatine and spermidine reduce collagen accumulation in kidneys of diabetic db/db mice. Nephron 69: 155–158; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Méndez J. D. Polyamines and human reproduction. In: Bachrach U.; Heimer Y. (eds) The physiology of polyamines, vol. 1. CRC Press, Florida, pp 23–38; 1989.

    Google Scholar 

  • Mendez J. D.; Balderas F. Inhibition by l-arginine and spermidine of hemoglobin glycation and lipid peroxidation in rats with induced diabetes. Biomed Pharmacother 60: 26–31; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Méndez J. D.; Díaz-Flores M.; Durán G.; Hicks J. J. Inhibition of rat embryonic development by the intrauterine administration of α-difluoromethylornithine. Contraception 28: 93–98; 1983.

    Article  PubMed  Google Scholar 

  • Méndez J. D.; Palomar-Morales M. Embryotoxicity for diabetes induced in rat: prevention for l-arginine and polyamines. Reprod Toxicol 13: 501–509; 1999.

    Article  PubMed  Google Scholar 

  • Miller L.; Wells P. G. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase. Toxicol Appl Pharmacol 252: 55–61; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Muzikova E.; Clark D. A. Polyamines may increase the percentage of in-vitro fertilized murine oocytes that develop into blastocysts. Human Reprod 10: 1172–1177; 1995.

    CAS  Google Scholar 

  • New D. A. T. Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol Rev 53: 81–122; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Nitta T.; Igarashi K.; Yamashita A.; Yamamoto M.; Yamamoto N. Involvement of polyamines in B cell receptor-mediated apoptosis: spermine functions as a negative modulator. Exp Cell Res 265: 174–183; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Okhawa H.; Ohishi W.; Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analyt Biochem 95: 351–358; 1979.

    Article  Google Scholar 

  • Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol 24: 31–41; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ornoy A.; Rand S. B.; Bischitz N. Hyperglycemia and hypoxia are interrelated in their teratogenic mechanism: Studies on cultured rat embryos. Birth Def Res (Part B) 89: 106–115; 2010.

    CAS  Google Scholar 

  • Ornoy A.; Zaken V.; Kohen R. Role of reactive oxygen species (ROS) in the diabetes-induced anomalies in rat embryos in vitro: reduction in antioxidant enzymes and low-molecular-weight antioxidants (LMWA) may be the causative factor for increased anomalies. Teratology 60: 376–386; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Paglia E. D.; Valentine N. W. Studies on the quantitative and qualitative characterization of erythocyte glutathione peroxidase. J Lab Clin Med 70: 158–168; 1967.

    PubMed  CAS  Google Scholar 

  • Pendeville H.; Carpino N.; Marine J. C.; Takahashi Y.; Muller M.; Martial J. A.; Cleveland J. L. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol. Cell. Biol. 21: 6549–6558; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Penning L. C.; Schipper R. G.; Vercammen D.; Verhofstad A. A.; Denecker T.; Beyaert R.; Vandenabeele P. Sensitization of TNF-induced apoptosis with polyamine synthesis inhibitors in different human and murine tumour cell lines. Cytokine 10: 423–431; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Reece E. A. Maternal fuels, diabetic embryopathy: pathomechanisms and prevention. Semin Reprod Endocrinol 17: 183–194; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sadler T. W.; Denno K. M.; Hunter 3rd E. S. Effects of altered maternal metabolism during gastrulation and neurulation stages of embryogenesis. Ann N Y Acad Sci 678: 48–61; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Seiler N.; Raul F. Polyamines and apoptosis. J Cell Mol Med 9: 623–642; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Singh C. K.; Kumar A.; Hitchcock D. B.; Fan D.; Goodwin R.; LaVoie H. A.; Nagarkatti A.; DiPette D. J.; Singh U. S. Resveratrol prevents embryonic oxidative stress and apoptosis associated with diabetic embryopathy and improves glucose and lipid profile of diabetic dam. Mol Nutr Food Res 55: 1–11; 2011.

    Article  Google Scholar 

  • Sivan E.; Lee Y. C.; Wu Y. K.; Reece E. A. Free radical scavenging enzymes in fetal dismorphogenesis among offspring of diabetic rats. Teratology 56: 343–349; 1997.

    Article  PubMed  CAS  Google Scholar 

  • The Diabetes Control and Complications Trial Research Group. Pregnancy outcomes in the diabetes control and complications trial. Am J Obstet Gynecol 174: 1343–1353; 1996.

    Article  Google Scholar 

  • The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26: 3160–3167; 2003.

    Article  Google Scholar 

  • Thomas T.; Balabhadrapathruni S.; Gardner C. R.; Hong J.; Faaland C. A.; Thomas T. J. Effects of epidermal growth factor on MDA-MB-468 breast cancer cells: alterations in polyamine biosynthesis and the expression of p21/CIP1/WAF1. J Cell Physiol 179: 257–266; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Thurman R. G.; Ley H. G.; Scholz R. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem 25: 420–430; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Trocino R. A.; Akazawa S.; Ishibashi M.; Matsumoto K.; Matsuo H.; Yamamoto H.; Goto S.; Urata Y.; Kondo T.; Nagataki S. Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture. Diabetes 44: 992–998; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Wentzel P.; Eriksson U. J. A diabetes-like environment increases malformation rate and diminishes prostaglandin E2 in rat embryos: reversal by administration of vitamin E and folic acid. Birth Def Res (Part A) 73: 506–511; 2005.

    Article  CAS  Google Scholar 

  • Wentzel P.; Gäreskog M.; Eriksson U. J. Decreased cardiac glutathione peroxidase levels and enhanced mandibular apoptosis in malformed embryos of diabetic rats. Diabetes 57: 3344–3352; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Wentzel P.; Wentzel C. R.; Gäreskog M. F.; Eriksson U. J. Induction of embryonic dysmorphogenesis by high glucose concentration, disturbed inositol metabolism, and inhibited protein kinase C activity. Teratology 63: 193–201; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Yang X.; Borg L. A.; Eriksson U. J. Altered metabolism and superoxide generation in neural tissue of rat embryos exposed to high glucose. Am J Physiol 272(1 pt 1): E173–E180; 1997.

    PubMed  CAS  Google Scholar 

  • Zabihi S.; Eriksson U. J.; Wentzel P. Folic acid supplementation affects ROS scavenging enzymes, enhances Vegf-A, and diminishes apoptotic state in yolk sacs of embryos of diabetic rats. Reprod Toxicol 23: 486–498; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Zaken V.; Kohen R.; Ornoy A. Vitamins C and E improve rat embryonic antioxidant defense mechanism in diabetic culture medium. Teratology 64: 33–44; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zangen S. W.; Ryu S.; Ornoy A. Alterations in the expression of antioxidant genes and the levels of transcription factor NF-Kappa B in relation to diabetic embryopathy in the Cohen diabetic rat model. Birth Def Res (Part A) 76: 107–114; 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge to PAPCA 2009–2010 (proyect 32) from Division de Investigacion y Posgrado from the Facultad de Estudios Superiores Iztacala, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Palomar-Morales.

Additional information

Editor: T. Okamoto

This work was partially supported by PAPCA 2009–2010, from the División de Investigación y Posgrado, and from Unidad de Morfología y Función, FES Iztacala, UNAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirino-Galindo, G., Mejía-Zepeda, R. & Palomar-Morales, M. Change in lipoperoxidation but not in scavenging enzymes activity during polyamine embryoprotection in rat embryo cultured in hyperglycemic media. In Vitro Cell.Dev.Biol.-Animal 48, 570–576 (2012). https://doi.org/10.1007/s11626-012-9548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9548-2

Keywords

Navigation