Skip to main content
Log in

Flow cytometric determination of genome size for eight commercially important fish species in China

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The genome size (C value) of eight commercially important fish species in China was measured using flow cytometry. Chicken (Gallus domesticus) erythrocytes were used as reference cells. When using propidium iodide (PI) as the fluorescent dye, genome sizes were 1.09 ± 0.08, 2.75 ± 0.12, 1.05 ± 0.05, 1.35 ± 0.11, 0.99 ± 0.05, 0.90 ± 0.08, 0.90 ± 0.07, and 0.88 ± 0.07 pg for Japanese eel (Anguilla japonica), mullet (Myxocyprinus asiaticus), yellowcheek carp (Elopichthys bambusa), blunt snout bream (Megalobrama amblycephala), yellow catfish (Pelteobagrus fulvidraco), ricefield eel (Monopterus albus), mandarin fish (Siniperca chuatsi), and snakehead (Ophicephalus argus), respectively. However, genome sizes were 1.25 ± 0.00, 3.08 ± 0.02, 1.25 ± 0.00, 1.57 ± 0.01, 0.96 ± 0.01, 1.00 ± 0.01, 0.91 ± 0.01, and 0.89 ± 0.01 pg for these fishes, respectively, when 4′, 6-diamidino-2-phenylindole (DAPI) was used as the fluorescent dye. Regardless of the dye used, the more evolutionarily advanced species had a smaller genome size than those with a lower evolutionary status. For each species, we also measured the size of erythrocytes and their nucleus and evaluated the relationships between erythrocyte size, nucleus size, chromosome number, and genome size. Genome size was positively correlated with erythrocyte nucleus size and chromosome number when using PI as the fluorescent dye, but it was only correlated with erythrocyte nucleus size when DAPI was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alfei L.; Cavallo D.; Leuteri P. E.; Grollino M. G.; Colombari P. T.; Ferri A.; Onali A.; Vita R. D. Nuclear DNA content in Salmo fibreni in Lake Posta Fibreno, Italy. J. Fish Biol. 48: 1051–1058; 1996.

    CAS  Google Scholar 

  • Brainerd E. L.; Slutz S. S.; Hall E. K.; Phillis R. W. Patterns of genome size evolution in Tetraodontiform fishes. Evolution 55: 2363–2368; 2001.

    PubMed  CAS  Google Scholar 

  • Cano J.; Alavarez M.; Thode G.; Munoz E. Phylogenetic interpretation of chromosomal and nuclear DNA content in the genus Blennius (Blenniidae, Perciformes). Genetica 58: 11–16; 1982.

    Article  Google Scholar 

  • Chang H. Y.; Sang T. K.; Jan K. Y.; Chen C. T. Cellular DNA contents and cell volumes of batoids. Copeia 3: 571–576; 1995.

    Article  Google Scholar 

  • Ciudad J.; Cid E.; Velasco A.; Lara J. M.; Aijón J.; Orfao A. Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species. Cytometry 48: 20–25; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Cui J.; Ren X.; Yu Q. Nuclear DNA content variation in fishes. Cytologia 56: 425–429; 1991.

    Article  Google Scholar 

  • Ebeling A. W.; Atkin N. B.; Setzer P. Y. Genome sizes of teleostean fishes: increases in some deep-sea species. Am. Nat. 105: 549–561; 1971.

    Article  Google Scholar 

  • Fenerich P. C.; Foresti F.; Oliveira C. Nuclear DNA content in 20 species of Siluriformes (Teleostei: Ostariophysi) from the Neotropical region. Genet. Mol. Biol. 27: 350–354; 2004.

    Article  CAS  Google Scholar 

  • Filipiak M.; Tylko G.; Kilarski W. Flow cytometric determination of genome size in European sunbleak Leucaspius delineates (Heckel, 1843). Fish Physiol. Biochem.; 2011. doi:10.1007/s10695-011-9512-1.

  • Gao Z.; Wang W.; Abbas K.; Zhou X.; Yang Y.; Diana J. S.; Wang H.; Wang H.; Li Y.; Sun Y. Haematological characterization of loach Misgurnus anguillicaudatus: comparison among diploid, triploid and tetraploid specimens. Comp. Biochem. Phys. A 147: 1001–1008; 2007.

    Article  Google Scholar 

  • Gregory T. R. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cell Mol. Dis. 27: 830–843; 2001.

    Article  CAS  Google Scholar 

  • Gregory T. R. Animal genome size database. http://www.genomesize.com. 2012.

  • Gregory T. R.; Hebert P. D. N. The modulation of DNA content: proximate causes and ultimate consequences. Genome Res. 9: 317–324; 1999.

    PubMed  CAS  Google Scholar 

  • Guo B. C.; Zou M.; Gan X. N.; He S. P. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing. BMC Genom. 11: 396; 2010.

    Article  CAS  Google Scholar 

  • Hardie D. C.; Hebert P. D. N. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46: 683–706; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hardie D. C.; Hebert P. D. N. Genome-size evolution in fishes. Can. J. Fish. Aquat. Sci. 61: 1636–1646; 2004.

    Article  Google Scholar 

  • Hickey A. J. R.; Clements K. D. Genome size evolution in New Zealand Triplefin fishes. J. Hered. 96: 356–362; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hinegardner R.; Rosen D. E. Cellular DNA content and the evolution of teleostean fishes. Am. Natur. 106: 621–644; 1972.

    Article  CAS  Google Scholar 

  • Juchno D.; Lackowska B.; Boron A.; Kilarski W. DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis taenia L.) and its polyploid forms. Fish Physiol. Biochem. 36: 523–529; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kraaijeveld K. Genome size and species diversification. Evol. Biol. 37: 227–233; 2010.

    Article  PubMed  Google Scholar 

  • Lamatsch D. K.; Steinlein C.; Schmid M.; Schartl M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry 39: 91–95; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lay P. A.; Baldwin J. What determines the size of teleost erythrocytes? Correlations with oxygen transport and nuclear volume. Fish Physiol. Biochem. 20: 31–35; 1999.

    Article  CAS  Google Scholar 

  • Li K.; Li Y. C.; Zhou D. Studies on the karyotypes and C-banding patterns of three species in Channidae (Pisces). Acta Genet. Sin 12: 470–477; 1985a. In Chinese with English abstract.

    Google Scholar 

  • Li S. S.; Wang R. F.; Liu G. Z.; Wang Y. X.; Li C. Y. A karyotypical study of Myxocyprinus asiaticus (Bleeker). Zool. Res 4: 182; 1983a. In Chinese.

    Google Scholar 

  • Li Y.; Li K.; Zhou T. Cellular DNA content of fourteen species of freshwater fishes. Acta Genet. Sin 10: 384–389; 1983b. In Chinese with English abstract.

    Google Scholar 

  • Li Y. C.; Li K.; Hong Y. H.; Gui J. F.; Zhou D. Studies on the karyotypes of Chinese cyprinid fishes VII. Karyotypic analyses of seven species in the subfamily Leuciscinae with a consideration for the phylogenetic relationships of some cyprinid fishes concerned. Acta Genet. Sin 12(5): 367–372; 1985b. In Chinese with English abstract.

    Google Scholar 

  • Mank J. E.; Avise J. C. Cladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes. Proc. Roy. Soc. Lond. B Biol. Sci. 273: 33–38; 2006.

    Article  Google Scholar 

  • Meagher T. R.; Crostich D. E. Nuclear DNA content and floral evolution in Silene latifolia. Proc. Soc. Lond. B 263: 1455–1460; 1996.

    Article  Google Scholar 

  • Pagel M.; Johnstone R. A. Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc. Roy. Soc. Lond. B Biol. Sci. 249: 119–124; 1992.

    Article  CAS  Google Scholar 

  • Pedersen R. DNA content, ribosomal gene multiplicity, and cell size in fish. J. Exp. Zool. 177: 65–79; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Peruzzi S.; Chatain B.; Menu B. Flow cytometric determination of genome size in European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), thinlip mullet (Liza ramada), and European eel (Anguilla anguilla). Aquat. Living Resour. 18: 77–81; 2005.

    Article  CAS  Google Scholar 

  • Starostová Z.; Kratochvíl L.; Flajshans M. Cell size does not always correspond to genome size: phylogenetic analysis in geckos questions optimal DNA theories of genome size evolution. Zoology 111: 377–384; 2008.

    Article  PubMed  Google Scholar 

  • Suzuki A. Karyotype and DNA contents of the Chinese catostomid fish, Myxocyprinus asiaticus. Chrom. Inform. Serv. 53: 25–27; 1992.

    Google Scholar 

  • Suzuki A.; Taki Y.; Mochizuki M.; Hirata J. Chromosomal speciation in Eurasian and Japanese Cyprinidae (Pisces, Cypriniformes). Cytobios 83: 171–186; 1995.

    Google Scholar 

  • Tiersch T. R.; Chandler R. W. Chicken erythrocytes as an internal reference for analysis of DNA content by flow cytometry in grass carp. Trans. Am. Fish Soc. 118: 713–717; 1989.

    Article  Google Scholar 

  • Venkatesh B. Evolution and diversity of fish genomes. Curr. Opin. Genet. Dev. 13: 588–592; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov A. E. Nucleotypic effect in homeotherms: body-mass independent metabolic rate of passerine birds is related to genome size. Evolution 51: 220–225; 1997.

    Article  Google Scholar 

  • Vinogradov A. E. Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31: 100–109; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov A. E. Intron-genome genome size relationship on a large evolutionary scale. J. Mol. Evol. 49: 376–384; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Xu J. L.; Pan H. C.; Li G. M. Studies of karyotype and meiosis in Monopterus albus zuiew using the method of division inhibition. Acta. Hydrobiol. Sin. 18: 164–169; 1994. In Chinese with English abstract.

    Google Scholar 

  • Yang W.; Kuang X. M.; Xu Y. M. Comparison of karyotypes of Anguilla anguilla and Anguilla japonica. J. South China Agr. 20: 47–50; 1999. In Chinese with English abstract.

    Google Scholar 

  • Yu X. J.; Zhou D.; Li Y. C.; Li K.; Zhou M. Chromosomes of Chinese fresh-water fishes. Science Press, Beijing, pp 1–166; 1989. In Chinese.

    Google Scholar 

  • Zan R. G.; Song Z. Analysis and comparison between the karyotypes of Ctenopharyngodon idellus and Megalobrama amblycephala. Acta Genetica Sinica 6: 205–211; 1979. In Chinese with English abstract.

    Google Scholar 

  • Zhou T. Chromosome studies in Chinese fresh-water fishes. Zool. Res 5(suppl): 38–51; 1984. In Chinese.

    Google Scholar 

  • Zhu J.; Zhang C. F.; Min K. H.; Wang J. X.; Xu G. C.; Zhang Y. Y. The comparison and analysis of chromosome karyotype of the Nile Perch (Lates nilotitus) and mandarin fish (Siniperca chuatsi). Acta. Hydrobiol. Sin. 33: 195–199; 2009. In Chinese with English abstract.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the earmarked fund for Modern Agro-industry Technology Research System entitled “Staple Freshwater Fishery Industry Technology System” (no. CARS-46-05) and Fundamental Research Funds for the Central Universities (no. 2011PY023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Wang.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Song, W., Yang, K. et al. Flow cytometric determination of genome size for eight commercially important fish species in China. In Vitro Cell.Dev.Biol.-Animal 48, 507–517 (2012). https://doi.org/10.1007/s11626-012-9543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9543-7

Keywords

Navigation