Skip to main content
Log in

Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae)

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We established a continuous cell line from the embryo of the mosquito Culex tritaeniorhynchus Giles (Diptera: Culicidae), a known major vector of the Japanese encephalitis virus (family Flaviviridae, genus Flavivirus) in Asia. The cell line, designated NIID-CTR, was serially subcultured in VP-12 medium supplemented with 10 % heat-inactivated fetal bovine serum (FBS). It continued to grow for more than 60 passages over a 750-d period. The NIID-CTR cell line mainly comprised two morphologically distinct types of cells with adhesive properties: spindle-shaped and round cells. Most of the NIID-CTR cells at the 45th passage were diploid (2n = 6). The growth kinetics of the NIID-CTR cells was significantly affected by the FBS concentration in the medium. The population doubling time of the NIID-CTR cells was 20 h in the presence of 10 % FBS and 76 h in its absence. The DNA sequence of the mitochondrial cytochrome oxidase I gene confirmed that the NIID-CTR cell line was derived from C. tritaeniorhynchus. The cells were highly susceptible to Japanese encephalitis and Dengue viruses, thus providing a valuable tool for the study of mosquito-borne flaviviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Athawale S. S.; Sudeep A. B.; Barde P. V.; Jadi R.; Pant U.; Mishra A. C.; Mourya D. T. A new cell line from the embryonic tissues of Culex tritaeniorhynchus and its susceptibility to certain flaviviruses. Acta Virol. 46(4): 237–240; 2002.

    PubMed  CAS  Google Scholar 

  • Brackney D. E.; Beane J. E.; Ebel G. D. RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog. 5(7): e1000502; 2009.

    Article  PubMed  Google Scholar 

  • Brackney D. E.; Scott J. C.; Sagawa F.; Woodward J. E.; Miller N. A.; Schilkey F. D.; Mudge J.; Wilusz J.; Olson K. E.; Blair C. D.; Ebel G. D. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl. Trop. Dis. 4(10): e856; 2010.

    Article  PubMed  Google Scholar 

  • Breland O. P. Studies on the chromosomes of mosquitoes. Ann. Entomol. Soc. Am. 54(3): 360–375; 1961.

    Google Scholar 

  • Campbell C. L.; Keene K. M.; Brackney D. E.; Olson K. E.; Blair C. D.; Wilusz J.; Foy B. D. Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol. 8: 47; 2008.

    Article  PubMed  Google Scholar 

  • Chao J.; Ball G. H. A comparison of amino acid utilization by cell lines of Culex tarsalis and Culex pipiens. In: Kurstak E.; Maramorosch K. (eds) Invertebrate tissue culture: applications in medicine, biology and agriculture. Academic Press, New York, pp 263–266; 1976.

    Google Scholar 

  • Chen Y. Y.; Fan Y. C.; Tu W. C.; Chang R. Y.; Shih C. C.; Lu I. H.; Chien M. S.; Lee W. C.; Chen T. H.; Chang G. J.; Chiou S. S. Japanese encephalitis virus genotype replacement; Taiwan; 2009–2010. Emerg Infect. Dis. 17(12): 2354–2356; 2011.

    Article  PubMed  Google Scholar 

  • Chotkowski H. L.; Ciota A. T.; Jia Y.; Puig-Basagoiti F.; Kramer L. D.; Shi P. Y.; Glaser R. L. West Nile virus infection of Drosophila melanogaster induces a protective RNAi response. Virology 377(1): 197–206; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Cirimotich C. M.; Scott J. C.; Phillips A. T.; Geiss B. J.; Olson K. E. Suppression of RNA interference increases alphavirus replication and virus-associated mortality in Aedes aegypti mosquitoes. BMC Microbiol. 9: 49; 2009.

    Article  PubMed  Google Scholar 

  • Cook S.; Lien N. G.; McAlister E.; Harbach R. E. Bothaella manhi, a new species of tribe Aedini (Diptera: Culicidae) from the Cuc Phuong National Park of Vietnam based on morphology and DNA sequence. Zootaxa 2661: 33–46; 2010.

    Google Scholar 

  • Dimopoulos G.; Richman A.; Müller H. M.; Kafatos F. C. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Nat. Acad. Sci. U. S. A. 94(21): 11508–11513; 1997.

    Article  CAS  Google Scholar 

  • Erlanger T. E.; Weiss S.; Keiser J.; Utzinger J.; Wiedenmayer K. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis. 15(1): 1–7; 2009.

    Article  PubMed  Google Scholar 

  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783–791; 1985.

    Article  Google Scholar 

  • Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle; 2005.

    Google Scholar 

  • Freshney R. I. Culture of animal cells (5th edition): a manual of basic technique. John Wiley & Sons, Inc., Hoboken; 2005.

    Book  Google Scholar 

  • Giulivi C.; Ross-Inta C.; Horton A. A.; Luckhart S. Metabolic pathways in Anopheles stephensi mitochondria. Biochem. J. 415(2): 309–316; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Grace T. D. C. Establishment of a line of mosquito (Aedes aegypti L.) cells grown in vitro. Nature 211(5047): 366–367; 1966.

    Article  PubMed  CAS  Google Scholar 

  • Hoshino K.; Isawa H.; Tsuda Y.; Kobayashi M. Laboratory colonization of Aedes japonicus japonicus (Diptera: Culicidae) collected in Narita, Japan and the biological properties of the established colony. Jpn. J. Infect. Dis. 63(6): 401–404; 2010.

    PubMed  Google Scholar 

  • Hsu, S. H. Growth of arboviruses in arthropod cell cultures: comparative studies. I. Preliminary observations on growth of arboviruses in a newly established line of mosquito cell (Culex quinquefasciatus Say). In : Welss, E. (ed.) Curr. Top. Microbiol. Immunol. 55. Springer, Berlin Heidelberg New York, pp 140–148; 1971.

  • Hsu S. H.; Li S. Y.; Cross J. H. A cell line derived from ovarian tissue of Culex tritaeniorhynchus summorosus Dyar. J. Med. Entomol. 9(1): 86–91; 1972.

    PubMed  CAS  Google Scholar 

  • Hsu S. H.; Mao W. H.; Cross J. H. Establishment of a line of cells derived from ovarian tissue of Culex quinquefasciatus Say. J. Med. Entomol. 7(6): 703–707; 1970.

    Google Scholar 

  • Hsu S. H.; Wang B. T.; Huang M. H.; Wong W. J.; Cross J. H. Growth of Japanese encephalitis virus in Culex tritaeniorhynchus cell cultures. Am.J.Trop. Med. Hyg. 24(5): 881–888; 1975.

    PubMed  CAS  Google Scholar 

  • Hughes G. L.; Ren X.; Ramirez J. L.; Sakamoto J. M.; Bailey J. A.; Jedlicka A. E.; Rasgon J. L. Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host–symbiont interaction. PLoS Pathog. 7(2): e1001296; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi A. Isolation of a Singh’s Aedes albopictus cell colne sensitive to dengue and chikungunya viruses. J. Gen. Virol. 40(3): 531–544; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Keene K. M.; Foy B. D.; Sanchez-Vargas I.; Beaty B. J.; Blair C. D.; Olson K. E. RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc. Nat. Acad. Sci. U. S. A. 101(49): 17240–17245; 2004.

    Article  CAS  Google Scholar 

  • Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative study of nucleotide sequences. J. Mol. Evolution 16(2): 111–120; 1980.

    Article  CAS  Google Scholar 

  • Kitamura S. Establishment of cell line from Culex mosquito. Kobe J. Med. Sci. 16(1): 41–50; 1970.

    PubMed  CAS  Google Scholar 

  • Lan Q.; Fallon A. M. Small heat shock proteins distinguish between two mosquito species and confirm identity of their cell lines. Am.J.Trop. Med. Hyg. 43(6): 669–676; 1990.

    PubMed  CAS  Google Scholar 

  • Larkin M. A.; Blackshields G.; Brown N. P.; Chenna R.; McGettigan P. A.; McWilliam H.; Valentin F.; Wallace I. M.; Wilm A.; Lopez R.; Thompson J. D.; Gibson T. J.; Higgins D. G. Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 2947–2948; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Li M. H.; Fu S. H.; Chen W. X.; Wang H. Y.; Guo Y. H.; Liu Q. Y.; Li Y. X.; Luo H. M.; Da W.; Duo Ji D. Z.; Ye X. M.; Liang G. D. Genotype V Japanese encephalitis virus is emerging. PLoS Negl. Trop. Dis. 5(7): e1231; 2011.

    Article  PubMed  Google Scholar 

  • Maharaj P. D.; Anishchenko M.; Langevin S. A.; Fang Y.; Reisen W. K.; Brault A. C. Structural gene (prME) chimeras of St. Louis encephalitis virus and West Nile virus exhibit altered in vitro cytopathic and growth phenotypes. J. Gen. Virol. 93(1): 39–49; 2011.

    Article  PubMed  Google Scholar 

  • Main O. M.; Hardy J. L.; Reeves W. C. Growth of arboviruses and other viruses in a continuous line of Culex tarsalis cells. J. Med. Entomol. 14(1): 107–112; 1977.

    PubMed  CAS  Google Scholar 

  • Mangada M. N.; Takegami T. Molecular characterization of the Japanese encephalitis virus representative immunotype strain JaGAr 01. Virus Res. 59(1): 101–112; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Marhoul Z.; Pudney M. A mosquito cell line (MOS. 55) from Anopheles gambiae larva. Trans. R. Soc. Trop. Med. Hyg. 66(1): 183–184; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhashi J. List of reported continuous invertebrate cell lines. In: Mitsuhashi J. (ed) Invertebrate tissue culture methods. Springer, Japan, pp 421–430; 2002.

    Chapter  Google Scholar 

  • Mitsuhashi J.; Maramorosch K. Leafhopper tissue culture: embryonic, nymphal, and imaginal tissues from aseptic insects. Contrib. Boyce Thompson Inst. 22(8): 435–460; 1964.

    Google Scholar 

  • Müller H. M.; Dimopoulos G.; Blass C.; Kafatos F. C. A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes. J. Biol. Chem. 274(17): 11727–11735; 1999.

    Article  PubMed  Google Scholar 

  • Myles K. M.; Wiley M. R.; Morazzani E. M.; Adelman Z. N. Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc. Nat. Acad. Sci. U. S. A. 105(50): 19938–19943; 2008.

    Article  CAS  Google Scholar 

  • Nerome R.; Tajima S.; Takasaki T.; Yoshida T.; Kotaki A.; Lim C. K.; Ito M.; Sugiyama A.; Yamauchi A.; Yano T.; Kameyama T.; Morishita I.; Kuwayama M.; Ogawa T.; Sahara K.; Ikegaya A.; Kanda M.; Hosoya Y.; Itokazu K.; Onishi H.; Chiya S.; Yoshida Y.; Tabei Y.; Katsuki K.; Tabata K.; Harada S.; Kurane I. Molecular epidemiological analyses of Japanese encephalitis virus isolates from swine in Japan from 2002 to 2004. J. Gen. Virol. 88(10): 2762–2768; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nga P. T.; del Carmen Parquet M.; Cuong V. D.; Ma S. P.; Hasebe F.; Inoue S.; Makino Y.; Takagi M.; Nam V. S.; Morita K. Shift in Japanese encephalitis virus (JEV) genotype circulating in northern Vietnam: implications for frequent introductions of JEV from Southeast Asia to East Asia. J. Gen. Virol. 85(6): 1625–1631; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Oelofsen M. J.; Gericke A.; Smith M. S.; van der Linde T. C. Establishment and characterization of a cell line from the mosquito Culex (Culex) theileri (Diptera: Culicidae) and its susceptibility to infection with arboviruses. J. Med. Entomol. 27(6): 939–944; 1990.

    PubMed  CAS  Google Scholar 

  • Page, R. D. M. TreeView Version 1. 6. 6.. http://taxonomy.zoology.gla.ac.uk/rod/treeview.html; 2001.

  • Pan X. L.; Liu H.; Wang H. Y.; Fu S. H.; Liu H. Z.; Zhang H. L.; Li M. H.; Gao X. Y.; Wang J. L.; Sun X. H.; Lu X. J.; Zhai Y. G.; Meng W. S.; He Y.; Wang H. Q.; Han N.; Wei B.; Wu Y. G.; Feng Y.; Yang D. J.; Wang L. H.; Tang Q.; Xia G.; Kurane I.; Rayner S.; Liang G. D. Emergence of genotype I of Japanese encephalitis virus as the dominant genotype in Asia. J. Virol. 85(19): 9847–9853; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Pant U.; Banerjee K.; Athawale S. A.; Dhanda V. Susceptibility of Culex bitaeniorhynchus cell line to some arboviruses. Indian J. Med. Res. 76: 789–794; 1982.

    Google Scholar 

  • Pant U.; Dhanda V. Establishment of a cell line from Culex bitaeniorhynchus. J. Tissue Culture Methods 6(2): 61–63; 1980.

    Article  Google Scholar 

  • Peleg J. Growth of arboviruses in primary tissue culture of Aedes aegypti embryos. Am.J.Trop. Med. Hyg. 17(2): 219–223; 1968.

    PubMed  CAS  Google Scholar 

  • Pudney M.; Varma M. G. Anopheles stephensi var. mysorenis: establishment of a larval cell line (Mos. 43). Exp. Parasitol. 29(1): 7–12; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Saitou N.; Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4): 406–425; 1987.

    PubMed  CAS  Google Scholar 

  • Sánchez-Vargas I.; Scott J. C.; Poole-Smith B. K.; Franz A. W.; Barbosa-Solomieu V.; Wilusz J.; Olson K. E.; Blair C. D. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 5(2): e1000299; 2009.

    Article  PubMed  Google Scholar 

  • Scott J. C.; Brackney D. E.; Campbell C. L.; Bondu-Hawkins V.; Hjelle B.; Ebel G. D.; Olson K. E.; Blair C. D. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl. Trop. Dis. 4(10): e848; 2010.

    Article  PubMed  Google Scholar 

  • Singh K. R. P. Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr. Sci. 36(19): 506–508; 1967.

    Google Scholar 

  • Siu R. W.; Fragkoudis R.; Simmonds P.; Donald C. L.; Chase-Topping M. E.; Barry G.; Attarzadeh-Yazdi G.; Rodriguez-Andres J.; Nash A. A.; Merits A.; Fazakerley J. K.; Kohl A. Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs. J. Virol. 85(6): 2907–2917; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Solomon T.; Ni H.; Beasley D. W.; Ekkelenkamp M.; Cardosa M. J.; Barrett A. D. Origin and evolution of Japanese encephalitis virus in southeast Asia. J. Virol. 77(5): 3091–3098; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tajima S.; Nukui Y.; Ito M.; Takasaki T.; Kurane I. Nineteen nucleotides in the variable region of 3′ non-translated region are dispensable for the replication of dengue type 1 virus in vitro. Virus Res. 116: 38–44; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Takhampunya R.; Kim H. C.; Tippayachai B.; Kengluecha A.; Klein T. A.; Lee W. J.; Grieco J.; Evans B. P. Emergence of Japanese encephalitis virus genotype V in the Republic of Korea. Virology J. 8: 449; 2011.

    Article  CAS  Google Scholar 

  • Tesh R. B. Establishment of two cell lines from the mosquito Toxorhynchites amboinensis (Diptera: Culicidae) and their susceptibility to infection with arboviruses. J. Med. Entomol. 17(4): 338–343; 1980.

    Google Scholar 

  • van den Hurk A. F.; Ritchie S. A.; Mackenzie J. S. Ecology and geographical expansion of Japanese encephalitis virus. Annu. Rev. Entomol. 54: 17–35; 2009.

    Article  PubMed  Google Scholar 

  • Vanlandingham D. L.; Hong C.; Klingler K.; Tsetsarkin K.; McElroy K. L.; Powers A. M.; Lehane M. J.; Higgs S. Differential infectivities of o’nyong-nyong and chikungunya virus isolates in Anopheles gambiae and Aedes aegypti mosquitoes. Am.J.Trop. Med. Hyg. 72(5): 616–621; 2005.

    PubMed  Google Scholar 

  • Varma M. G. R.; Pudney M. The growth and serial passage of cell lines from Aedes aegypti (L.) larvae in different media. J. Med. Entom. 6(4): 432–439; 1969.

    CAS  Google Scholar 

  • World Health Organization. http://www.who.int/mediacentre/factsheets/fs117/en/index.html; 2009.

Download references

Aknowledgements

This work was partially supported by a grant from Japanese Ministry of Health, Labor and Welfare (21-Shinko-Ippan-005), a Grant-in-aids from the Japan Society for the Promotion of Science (Scientific Research C, no. 22590387), and a grant from Japanese Ministry of the Environment (Global Environment Research Fund, S-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Isawa.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwata, R., Hoshino, K., Isawa, H. et al. Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae). In Vitro Cell.Dev.Biol.-Animal 48, 369–376 (2012). https://doi.org/10.1007/s11626-012-9520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9520-1

Keywords

Navigation