Skip to main content
Log in

Impact of medium volume and oxygen concentration in the incubator on pericellular oxygen concentration and differentiation of murine chondrogenic cell culture

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that oxygen environment is an important determinate factor of cell phenotypes and differentiation, although factors which affect pericellular oxygen concentration (POC) in murine chondrogenic cell culture remain unidentified. Oxygen concentrations in vivo were measured in rabbit musculoskeletal tissues, which were by far hypoxic compared to 20% O2 (ranging from 2.29 ± 1.16 to 4.36 ± 0.51%). Oxygen concentrations in murine chondrogenic cell (C3H10T1/2) culture medium were monitored in different oxygen concentrations (20% or 5%) in the incubator and in different medium volumes (3,700 or 7,400 μl) within 25-cm2 flasks. Chondrogenic differentiation was assessed by glycosaminoglycan production with quantitative evaluation of Alcian blue staining in 12-well culture dishes. Expression of chondrogenic genes, aggrecan, and type II collagen α1, was examined by quantitative real-time polymerase chain reaction. Oxygen concentrations in medium decreased accordingly with the depth from medium surface, and POC at Day 6 was 18.99 ± 0.81% in 3,700-μl medium (1,480-μm depth) and 13.26 ± 0.23% in 7,400-μl medium (2,960-μm depth) at 20% O2 in the incubator, which was 4.96 ± 0.08% (1,480-μm depth) and 2.83 ± 0.42% (2,960-μm depth) at 5% O2, respectively. The differences of POC compared by medium volume were statistically significant (p = 0.0003 at 20% and p = 0.001 at 5%). Glycosaminoglycan production and aggrecan gene expression were most promoted when cultured in moderately low POC, 1,000 μl (2,960-μm depth) at 20% O2 and 500 μl (1,480-μm depth) at 5% O2 in 12-well culture dishes. We demonstrate that medium volume and oxygen concentration in the incubator affect not only POC but also chondrogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Asahina I.; Sampath T. K.; Hauschka P. V. Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells. Exp. Cell Res. 222: 38–47; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bassett C. A.; Herrmann I. Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 190: 460–461; 1961.

    Article  PubMed  CAS  Google Scholar 

  • Brighton C. T.; Wang W.; Clark C. C. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J. Bone Joint Surg. Am. 90: 833–848; 2008.

    Article  PubMed  Google Scholar 

  • Chapman J. D.; Sturrock J.; Boag J. W.; Crookall J. O. Factors affecting the oxygen tension around cells growing in plastic Petri dishes. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 17: 305–328; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Chen L.; Fink T.; Ebbesen P.; Zachar V. Hypoxic treatment inhibits insulin-induced chondrogenesis of ATDC5 cells despite upregulation of DEC1. Connect. Tissue Res. 47: 119–123; 2006.

    Article  PubMed  Google Scholar 

  • Cipolleschi M. G.; Dello Sbarba P.; Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82: 2031–2037; 1993.

    PubMed  CAS  Google Scholar 

  • Ebbesen P.; Eckardt K. U.; Ciampor F.; Pettersen E. O. Linking measured intercellular oxygen concentration to human cell functions. Acta Oncol. 43: 598–600; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Elder B. D.; Athanasiou K. A. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng. Part B Rev. 15: 43–53; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Elder S. H.; Fulzele K. S.; McCulley W. R. Cyclic hydrostatic compression stimulates chondroinduction of C3H/10T1/2 cells. Biomech. Model. Mechanobiol. 3: 141–146; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Evers B.; Odemis V.; Gerngross H. Oxygen partial pressure in the anterior tibial muscle during and after knee surgery with tourniquet control. Adv. Exp. Med. Biol. 428: 317–325; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Haas A. R.; Tuan R. S. Murine C3H10T1/2 multipotential cells as an in vitro model of mesenchymal chondrogenesis. Methods Mol. Biol. 137: 383–389; 2000.

    PubMed  CAS  Google Scholar 

  • Hirao M.; Tamai N.; Tsumaki N.; Yoshikawa H.; Myoui A. Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J. Biol. Chem. 281: 31079–31092; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hopfl G.; Ogunshola O.; Gassmann M. HIFs and tumors—causes and consequences. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286: R608–R623; 2004.

    Article  PubMed  Google Scholar 

  • Kiaer T.; Gronlund J.; Sorensen K. H. Subchondral pO2, pCO2, pressure, pH, and lactate in human osteoarthritis of the hip. Clin. Orthop. Relat. Res. 229: 149–155; 1988.

    PubMed  Google Scholar 

  • Kofoed H.; Sjontoft E.; Siemssen S. O.; Olesen H. P. Bone marrow circulation after osteotomy. Blood flow, pO2, pCO2, and pressure studied in dogs. Acta Orthop. Scand. 56: 400–403; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Lee C. C.; Ye F.; Tarantal A. F. Comparison of growth and differentiation of fetal and adult rhesus monkey mesenchymal stem cells. Stem Cells Dev. 15: 209–220; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lim Y. B.; Kang S. S.; Park T. K.; Lee Y. S.; Chun J. S.; Sonn J. K. Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase C-alpha signaling. Biochem. Biophys. Res. Commun. 273: 609–613; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Malladi P.; Xu Y.; Chiou M.; Giaccia A. J.; Longaker M. T. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am. J. Physiol. Cell Physiol. 290: C1139–C1146; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mamchaoui K.; Saumon G. A method for measuring the oxygen consumption of intact cell monolayers. Am. J. Physiol. Lung Cell. Mol. Physiol. 278: L858–L863; 2000.

    PubMed  CAS  Google Scholar 

  • Metzen E.; Wolff M.; Fandrey J.; Jelkmann W. Pericellular pO2 and O2 consumption in monolayer cell cultures. Respir. Physiol. 100: 101–106; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Pettersen E. O.; Larsen L. H.; Ramsing N. B.; Ebbesen P. Pericellular oxygen depletion during ordinary tissue culturing, measured with oxygen microsensors. Cell Prolif. 38: 257–267; 2005.

    Article  PubMed  Google Scholar 

  • Pilgaard L.; Lund P.; Duroux M.; Fink T.; Ulrich-Vinther M.; Soballe K.; Zachar V. Effect of oxygen concentration, culture format and donor variability on in vitro chondrogenesis of human adipose tissue-derived stem cells. Regen. Med. 4: 539–548; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Richter A.; Sanford K. K.; Evans V. J. Influence of oxygen and culture media on plating efficiency of some mammalian tissue cells. J. Natl. Cancer Inst. 49: 1705–1712; 1972.

    PubMed  CAS  Google Scholar 

  • Shukunami C.; Ohta Y.; Sakuda M.; Hiraki Y. Sequential progression of the differentiation program by bone morphogenetic protein-2 in chondrogenic cell line ATDC5. Exp. Cell Res. 241: 1–11; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wagner D. R.; Lindsey D. P.; Li K. W.; Tummala P.; Chandran S. E.; Smith R. L.; Longaker M. T.; Carter D. R.; Beaupre G. S. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann. Biomed. Eng. 36: 813–820; 2008.

    Article  PubMed  Google Scholar 

  • Wolff M.; Fandrey J.; Jelkmann W. Microelectrode measurements of pericellular pO2 in erythropoietin-producing human hepatoma cell cultures. Am. J. Physiol. 265: C1266–C1270; 1993.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mari Shinkawa for her excellent technical assistances, and we also would like to thank Osteopharma for supplying recombinant human BMP-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Ebina.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oze, H., Hirao, M., Ebina, K. et al. Impact of medium volume and oxygen concentration in the incubator on pericellular oxygen concentration and differentiation of murine chondrogenic cell culture. In Vitro Cell.Dev.Biol.-Animal 48, 123–130 (2012). https://doi.org/10.1007/s11626-011-9479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9479-3

Keywords

Navigation