Skip to main content
Log in

Establishment and assessment of a simple and easily reproducible incision model of spinal cord neuron cells in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

A growing number of in vitro models have been introduced to study the mechanisms of spinal cord injury. A potential drawback of these models is that they are difficult to reproduce. In this study, an in vitro incision model was established using primary cultured neuronal cells from fetal rat spinal cords. The neurons were subjected to incision in a simple and reproducible way. To assess whether this model could simulate the responses of spinal cord neuron cells in vivo after a spinal cord transection, apoptosis, and the expression of immediate early genes were detected in the neurons at various time points after injury. The results indicated that: (1) significantly more terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were observed at 1, 3, and 7 d following injury and (2) the expression of both c-Jun and c-Fos was induced 10 min after incision and had markedly higher levels 2 h post-injury. These results suggested that our model can partially imitate the responses of in vivo neuronal cells after a spinal cord transection and such models may facilitate further understanding of biochemical and cellular events associated with spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Akhtar A. Z.; Pippin J. J.; Sandusky C. B. Animal models in spinal cord injury: a review. Rev Neurosci 19: 47–60; 2008.

    Article  PubMed  Google Scholar 

  • Balentine J. D.; Greene W. B.; Bornstein M. In vitro spinal cord trauma. Lab Invest 58: 93–99; 1988.

    PubMed  CAS  Google Scholar 

  • Broude E.; Mcatee M.; Kelley M. S.; Bregman B. S. c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy. Exp Neurol 148: 367–377; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan K. M.; Elias L. J. Psychological distress and family burden following spinal cord injury: concurrent traumatic brain injury cannot be overlooked. Axone 22: 16–17; 2001.

    PubMed  CAS  Google Scholar 

  • Campagnolo D. I.; Bartlett J. A.; Keller S. E. Influence of neurological level on immune function following spinal cord injury: a review. J Spinal Cord Med 23: 121–128; 2000.

    PubMed  CAS  Google Scholar 

  • Cargill R. S.; Thibault L. E. Acute alterations in [Ca2+]i in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: an in vitro model for neural trauma. J Neurotrauma 13: 395–407; 1996.

    Article  PubMed  Google Scholar 

  • Casanovas A.; Ribera J.; Hager G.; Kreutzberg G. W.; Esquerda J. E. c-Jun regulation in rat neonatal motoneurons postaxotomy. J Neurosci Res 63: 469–479; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Chernoff E. A. Spinal cord regeneration: a phenomenon unique to urodeles? Int J Dev Biol 40: 823–831; 1996.

    PubMed  CAS  Google Scholar 

  • Chi S. I.; Levine J. D.; Basbaum A. I. Effects of injury discharge on the persistent expression of spinal cord fos-like immunoreactivity produced by sciatic nerve transection in the rat. Brain Res 617: 220–224; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Del-Bel E. A.; Borges C. A.; Defino H. L.; Guimaraes F. S. Induction of Fos protein immunoreactivity by spinal cord contusion. Braz J Med Biol Res 33: 521–528; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Dias M. S. Traumatic brain and spinal cord injury. Pediatr Clin North Am 51: 271–303; 2004.

    Article  PubMed  Google Scholar 

  • Dunn-Meynell A. A.; Levin B. E. Histological markers of neuronal, axonal and astrocytic changes after lateral rigid impact traumatic brain injury. Brain Res 761: 25–41; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ellis E. F.; Mckinney J. S.; Willoughby K. A.; Liang S.; Povlishock J. T. A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J Neurotrauma 12: 325–339; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Fayaz I.; Tator C. H. Modeling axonal injury in vitro: injury and regeneration following acute neuritic trauma. J Neurosci Methods 102: 69–79; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gimenez Y Ribotta M. G.; Roudet C.; Sandillon F.; Privat A. Transplantation of embryonic noradrenergic neurons in two models of adult rat spinal cord injury: ultrastructural immunocytochemical study. Brain Res 707: 245–255; 1996.

    Article  PubMed  Google Scholar 

  • Gross G. W.; Lucas J. H.; Higgins M. L. Laser microbeam surgery: ultrastructural changes associated with neurite transection in culture. J Neurosci 3: 1979–1993; 1983.

    PubMed  CAS  Google Scholar 

  • Ham J.; Babij C.; Whitfield J.; Pfarr C. M.; Lallemand D.; Yaniv M.; Rubin L. L. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14: 927–939; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann A. W.; Kirk P.; Hastie B. A.; Semik P.; Hamilton B. B.; Linacre J. M.; Wright B. D.; Granger C. Relationships between disability measures and nursing effort during medical rehabilitation for patients with traumatic brain and spinal cord injury. Arch Phys Med Rehabil 78: 143–149; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hicken B. L.; Putzke J. D.; Novack T.; Sherer M.; Richards J. S. Life satisfaction following spinal cord and traumatic brain injury: a comparative study. J Rehabil Res Dev 39: 359–365; 2002.

    PubMed  Google Scholar 

  • Hirata Y.; Adachi K.; Kiuchi K. Activation of JNK pathway and induction of apoptosis by manganese in PC12 cells. J Neurochem 71: 1607–1615; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hughes P. E.; Alexi T.; Walton M.; Williams C. E.; Dragunow M.; Clark R. G.; Gluckman P. D. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol 57: 421–450; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S.; Nakagawa S. Spinal cord transection induced c-fos protein in the rat motor cortex. Brain Res 792: 164–167; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kajander K. C.; Madsen A. M.; Iadarola M. J.; Draisci G.; Wakisaka S. Fos-like immunoreactivity increases in the lumbar spinal cord following a chronic constriction injury to the sciatic nerve of rat. Neurosci Lett 206: 9–12; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Laplaca M. C.; Simon C. M.; Prado G. R.; Cullen D. K. CNS injury biomechanics and experimental models. Prog Brain Res 161: 13–26; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lucas J. H.; Gross G. W.; Emery D. G.; Gardner C. R. Neuronal survival or death after dendrite transection close to the perikaryon: correlation with electrophysiologic, morphologic, and ultrastructural changes. Cent Nerv Syst Trauma 2: 231–255; 1985.

    PubMed  CAS  Google Scholar 

  • Morrison 3rd B.; Meaney D. F.; Mcintosh T. K. Mechanical characterization of an in vitro device designed to quantitatively injure living brain tissue. Ann Biomed Eng 26: 381–390; 1998a.

    Article  PubMed  Google Scholar 

  • Morrison 3rd B.; Saatman K. E.; Meaney D. F.; Mcintosh T. K. In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15: 911–928; 1998b.

    Article  PubMed  Google Scholar 

  • Mukhin A. G.; Ivanova S. A.; Knoblach S. M.; Faden A. I. New in vitro model of traumatic neuronal injury: evaluation of secondary injury and glutamate receptor-mediated neurotoxicity. J Neurotrauma 14: 651–663; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson M.; Hoang T. X.; Wu J.; Havton L. A. Glial reactions in a rodent cauda equina injury and repair model. Exp Brain Res 170: 52–60; 2006.

    Article  PubMed  Google Scholar 

  • Oliveira A. L.; Risling M.; Negro A.; Langone F.; Cullheim S. Apoptosis of spinal interneurons induced by sciatic nerve axotomy in the neonatal rat is counteracted by nerve growth factor and ciliary neurotrophic factor. J Comp Neurol 447: 381–393; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Pan W.; Kastin A. J. Cytokine transport across the injured blood–spinal cord barrier. Curr Pharm Des 14: 1620–1624; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero D. A.; Anwar M.; Kim J.; Sica A. L.; Gootman N.; Gootman P. M. Induction of c-fos gene expression by spinal cord transection in the rat. Brain Res 763: 21–29; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Tecoma E. S.; Monyer H.; Goldberg M. P.; Choi D. W. Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neuron 2: 1541–1545; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M.; Inoue K.; Salter M. W. Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci 28: 101–107; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev A. G.; Faden A. I. Sequential expression of c-fos protooncogene, TNF-alpha, and dynorphin genes in spinal cord following experimental traumatic injury. Mol Chem Neuropathol 23: 179–190; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Chinese National Basic Research Program (grant no. 2009CB918301) and Open Project Program of the State Key Laboratory of Proteomics (SKLP2010yx-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Additional information

Editor: T. Okamoto

Haiping Que and Yong Liu contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Que, H., Liu, Y., Jia, Y. et al. Establishment and assessment of a simple and easily reproducible incision model of spinal cord neuron cells in vitro. In Vitro Cell.Dev.Biol.-Animal 47, 558–564 (2011). https://doi.org/10.1007/s11626-011-9443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9443-2

Keywords

Navigation