Skip to main content
Log in

Bone morphogenetic protein 4 is an efficient inducer for mouse embryonic stem cell differentiation into primordial germ cell

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Presence of specific growth factors and feeder layers are thought to be important for in vitro embryonic stem cell (ESCs) differentiation. In this study, the effect of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs was evaluated. One-day-old embryoid body was cultured for 4 d in simple culture systems or on top of the MEFs, both in the presence or absence of BMP4. Data showed significant higher viability percent and proliferation rate in simple culture media compared to co-culture systems. Analysis of gene expression indicated that the germ cell-specific genes (VASA and Stra8) were expressed in a significant higher ratio in BMP4-treated cells in simple culture system. Also, the results of immunocytochemistry in simple culture systems showed that the mean percentage of immunostaining cells of VASA, the primordial germ cell (PGC) marker, was increased significantly in BMP4-treated cells compared with BMP4-free group. Meanwhile, CDH1, the late premiotic germ cell marker, showed no significant difference between these two groups. The results suggest that BMP4 is an efficient inducer in PGC derivation from mouse ESC. However, the employment of MEFs as feeder has no apparent effect on PGC derivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Abbondonzo S. J.; Gadi I.; Stewart C. L. Derivation of embryonic stem cell lines. Meth. Enzymol. 225: 803–823; 1993.

    Article  Google Scholar 

  • Boroujeni M. B.; Salehnia M.; Valojerdi M. R.; Mowla S. J.; Forouzandeh M.; Hajizadeh E. Comparison of gene expression profiles in erythroid-like cells derived from mouse embryonic stem cells differentiated in simple and co-culture systems. Am. J. Hematol. 83: 109–115; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Chambers I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells 6: 386–391; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Clark A. T.; Bodnar M. S.; Fox M.; Rodriquez R. T.; Abeyta M. J.; Firpo M. T.; Pera R. A. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. Genet. 13: 727–739; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Drusenheimer N.; Wulf G.; Nolte J.; Lee J. H.; Dev A.; Dressel R.; Gromoll J.; Schmidtke J.; Engel W.; Nayernia K. Putative human male germ cells from bone marrow stem cells. Soc. Reprod. Fertil. Suppl. 63: 69–76; 2007.

    PubMed  CAS  Google Scholar 

  • Dudley B. M.; Runyan C.; Takeuchi Y.; Schaible K.; Molyneaux K. BMP signaling regulates PGC numbers and motility in organ culture. Mech. Dev. 124: 68–77; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Eddy E. M. Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol. 43: 229–280; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Eddy E. M. Male germ cell gene expression. Recent Prog. Horm. Res. 57: 103–128; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Evans M. J.; Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Geijsen N.; Horoschak M.; Kim K.; Gribnau J.; Eggan K.; Daley G. Q. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427: 148–154; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K.; Kobayashi T.; Umino T.; Goitsuka R.; Matsui Y.; Kitamura D. SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech. Dev. 118: 99–109; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hubner K.; Fuhrmann G.; Christenson L. K.; Kehler J.; Reinbold R.; De La Fuente R.; Wood J.; Strauss J. F.; Boiani M.; Scholer H. R. Derivation of oocytes from mouse embryonic stem cells. Science 300: 1251–1256; 2003.

    Article  PubMed  Google Scholar 

  • Johnson A. D.; Crother B.; White M. E.; Patient R.; Bachvarova R. F.; Drum M.; Masi T. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358: 1371–1379; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kee K.; Gonsalves J. M.; Clark A. T.; Reijo Pera R. A. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev. 15: 831–837; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu U.; Taga T.; Watanabe M.; Saito M.; Shirayoshi Y.; Kishimoto T.; Nakatsuji N. Functional requirement of gp130-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells. Development 122: 1235–1242; 1996.

    PubMed  CAS  Google Scholar 

  • Lacham-Kaplan O. In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction 128: 147–152; 2004.

    Article  PubMed  Google Scholar 

  • Lawson K. A.; Dunn N. R.; Roelen B. A.; Zeinstra L. M.; Davis A. M.; Wright C. V.; Korving J. P.; Hogan B. L. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13: 424–436; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Li L.; Xie T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 21: 605–631; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Makoolati Z.; Movahedin M.; Forouzandeh-Moghadam M. Effects of different doses of bone morphogenetic protein 4 on viability and proliferation rates of mouse embryonic stem cells. Yakhteh Med. J. 11: 29–34; 2009.

    Google Scholar 

  • Nagano M. C. In vitro gamete derivation from pluripotent stem cells: progress and perspective. Biol. Reprod. 76: 546–551; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K.; Lee J. H.; Drusenheimer N.; Nolte J.; Wulf G.; Dressel R.; Gromoll J.; Engel W. Derivation of male germ cells from bone marrow stem cells. Lab. Invest. 86: 654–663; 2006a.

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K.; Li M.; Jaroszynski L.; Khusainov R.; Wulf G.; Schwandt I.; Korabiowska M.; Michelmann H. W.; Meinhardt A.; Engel W. Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells. Hum. Mol. Genet. 13: 1451–1460; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K.; Nolte J.; Michelmann H. W.; Lee J. H.; Rathsack K.; Drusenheimer N.; Dev A.; Wulf G.; Ehramann I. E.; Elliott D. J.; Okpanyi V.; Zechner U.; Haaf T.; Meinhardt A.; Engel W. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell 11: 125–132; 2006b.

    Article  PubMed  CAS  Google Scholar 

  • Pesce M.; Klinger F. G.; De Felici M. Derivation in culture of primordial germ cells from cells of the mouse epiblast: phenotypic induction and growth control by Bmp4 signalling. Mech. Dev. 112: 15–24; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Qi X.; Li T. G.; Hao J.; Hu J.; Wang J.; Simmons H.; Miura S.; Mishina Y.; Zhao G. Q. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Dev. Biol. 101: 6027–6032; 2004.

    CAS  Google Scholar 

  • Saitou M.; Payer B.; Lange U. C.; Erhardt S.; Barton S. C.; Surani M. A. Specification of germ cell fate in mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358: 1363–1370; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Scholer H.; Dressler G.; Balling R.; Rohdewohld H.; Gruss P. Oct-4: a germ line specific transcription factor mapping to the mouse t-complex. EMBO J. 9: 2185–2195; 1990.

    PubMed  CAS  Google Scholar 

  • Shinohara T.; Avarbock M. R.; Brinster R. L. β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. U. S. A. 96: 5504–5509; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Shinohara T.; Avarbock M. R.; Brinster R. L. Functional analyses of spermatogonial stem cells in steel and cryptorchid infertile mouse models. Dev. Biol. 220: 401–411; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Shinohara T.; Orwig K. E.; Avarbock M. R.; Brinster R. L. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc. Natl. Acad. Sci. U. S. A. 98: 6186–6191; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland A. E.; Calarco P. G.; Damsky C. H. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119: 1175–1186; 1993.

    PubMed  CAS  Google Scholar 

  • Tokuda M.; Kadokawa Y.; Kurahashi H.; Marunouchi T. CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol. Reprod. 76: 130–141; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Toyooka Y.; Tsunekawa N.; Akasu R.; Noce T. Embryonic stem cells can form germ cells in vitro. Proc. Natl. Acad. Sci. U. S. A. 100: 11457–11462; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Toyooka Y.; Tsunekawa N.; Takahashi Y.; Matsui Y.; Satoh M.; Noce T. Expression and intracellular localization of mouse VASA-homologue protein during germ cell development. Mech. Dev. 93: 139–149; 2000.

    Article  PubMed  CAS  Google Scholar 

  • West J. A.; Daley G. Q. In vitro gametogenesis from embryonic stem cells. Curr. Opin. Cell Biol. 16: 688–692; 2004.

    Article  PubMed  CAS  Google Scholar 

  • West J. A.; Park I. H.; Daley G. Q.; Geijsen N. In vitro generation of germ cells from murine embryonic stem cells. Nat. Protoc. 4: 2026–2036; 2006.

    Article  Google Scholar 

  • Wylie C. Germ cells. Cell 96: 165–174; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ying Y.; Qi X.; Zhao G. Q. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc. Natl. Acad. Sci. U. S. A. 98: 7858–7862; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ying Y.; Zhao G. Q. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev. Biol. 232: 484–492; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Yuan J. S.; Reed A.; Chen F.; Stewart Jr. C. N. Statistical analysis of real-time PCR data. BMC Bioinform. 7: 85; 2006. 22.

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank the Tarbiat Modares University’s Medical Research Director for providing a grant for this work. The project was supported in part by Stem Cell Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoureh Movahedin.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makoolati, Z., Movahedin, M. & Forouzandeh-Moghadam, M. Bone morphogenetic protein 4 is an efficient inducer for mouse embryonic stem cell differentiation into primordial germ cell. In Vitro Cell.Dev.Biol.-Animal 47, 391–398 (2011). https://doi.org/10.1007/s11626-011-9404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9404-9

Keywords

Navigation