Skip to main content
Log in

Lessons from nature for preservation of mammalian cells, tissues, and organs

  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The study of mechanisms by which animals tolerate environmental extremes may provide strategies for preservation of living mammalian materials. Animals employ a variety of compounds to enhance their survival, including production of disaccharides, glycerol, and antifreeze compounds. The cryoprotectant glycerol was discovered before its role in amphibian survival. In the last decade, trehalose has made an impact on freezing and drying methods for mammalian cells. Investigation of disaccharides was stimulated by the variety of organisms that tolerate dehydration stress by accumulation of disaccharides. Several methods have been developed for the loading of trehalose into mammalian cells, including inducing membrane lipid-phase transitions, genetically engineered pores, endocytosis, and prolonged cell culture with trehalose. In contrast, the many antifreeze proteins (AFPs) identified in a variety of organisms have had little impact. The first AFPs to be discovered were found in cold water fish; their AFPs have not found a medical application. Insect AFPs function by similar mechanisms, but they are more active and recombinant AFPs may offer the best opportunity for success in medical applications. For example, in contrast to fish AFPs, transgenic organisms expressing insect AFPs exhibit reduced ice nucleation. However, we must remember that nature’s survival strategies may include production of AFPs, antifreeze glycolipids, ice nucleators, polyols, disaccharides, depletion of ice nucleators, and partial desiccation in synchrony with the onset of winter. We anticipate that it is only by combining several natural low temperature survival strategies that the full potential benefits for mammalian cell survival and medical applications can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Amir G.; Horowitz L.; Rubinsky B.; Yousif B. S.; Lavee J.; Smolinskyd A. K. Subzero nonfreezing cryopreservation of rat hearts using antifreeze protein I and antifreeze protein III. Cryobiology 48: 273–282; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Amir G.; Rubinsky B.; Kassif Y.; Horowitz L.; Smolinsky A. K.; Lavee J. Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins—an electron microscopy study. Eur J Cardio Thoracic Surg 24: 292–297; 2003.

    Article  Google Scholar 

  • Amornwittawat N.; Wang S.; Banatlao J.; Chung M.; Velasco E.; Duman J. G.; Wen X. Effects of polyhydroxy compounds on beetle antifreeze protein activity. Biochimica et Biophysica Acta, Proteins and Proteomics 1794: 341–346; 2009.

    Article  CAS  Google Scholar 

  • Amornwittawat N.; Wang S.; Duman J. G.; Wen X. Polycarboxylates enhance beetle antifreeze protein activity. Biochim Biophys Acta: Proteins Proteomics 1784: 1942–1948; 2008.

    Article  CAS  Google Scholar 

  • Andorfer C. A.; Duman J. G. Isolation and characterization of cDNA clones encoding antifreeze proteins of the pyrochroid beetle Dendroides canadensis. J Insect Physiol 46: 365–372; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Arav A.; Ramsbottom G.; Baguis A.; Rubinsky B.; Roche J. F.; Boland M. P. Vitrification of bovine and ovine embryos with the MDS technique and antifreeze proteins. Cryobiology 30: 621–622; 1993.

    Google Scholar 

  • Beattie G. M.; Crowe J. H.; Lopez A. D.; Cirulli V.; Ricordi C.; Hayek A. Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46: 519–523; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bennett V. A.; Sformo T.; Walters K.; Toien O.; Jeannet K.; Hochstrasser R.; Pan Q.; Serianni A. S.; Barnes B. M.; Duman J. G. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricus): roles of antifreeze proteins, polyols, dehydration, and diapause. J Exp Biol 208: 4467–4477; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Brockbank K. G. M. Essentials of cryobiology. In: Brockbank K. G. M. (ed) Principles of autologous, allogeneic, and cryopreserved venous transplantation. RG Landes Company, Austin, pp 91–102; 1995.

    Google Scholar 

  • Brockbank K. G. M.; Campbell L. H.; Ratcliff K. M.; Sarver K. A. Method for treatment of cellular materials with sugars prior to preservation. U.S. Patent #7,270,946; 2007.

  • Brockbank K. G. M.; Chen Z.; Greene E. D., Duman J. G. Anti-freeze proteins enable sub-zero preservation of tissue functions without freezing. Regenerative Medicine: Advancing Next Generation Therapies, abstract. 2009

  • Brockbank K. G. M.; Taylor M. J. Tissue preservation. In: Baust J. G. (eds) Advances in biopreservation, Chapter 8. CRC Press, Boca Raton, pp 157–196; 2007.

  • Buchanan S. S.; Menze M. A.; Hand S. C.; Pyatt D. W.; Carpenter J. F. Cell Preserv Technol 3(4): 212–222; 2005.

    Article  CAS  Google Scholar 

  • Cheng C. C. M.; DeVries A. L. Origins and evolution of fish antifreeze proteins. In: Ewart K. V.; Hew C. L. (eds) Fish antifreeze proteins. World Scientific, New Jersey, pp 83–108; 2002.

    Chapter  Google Scholar 

  • Crowe J. H.; Crowe L. M.; Wolkers W.; Tsvetkova N. M. et al. Stabilization of mammalian cells in the dry state. In: Baust J. G.; Baust J. M. (eds). CRC Press, Taylor and Francis Group, Boca Raton, USA, pp 384–411; 2007

  • DeVries A. L. Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172: 1152–1155; 1971.

    Article  PubMed  CAS  Google Scholar 

  • DeVries A. L. Antifreeze glycopeptides and peptides: interactions with ice and water. Meth Enzymol 127: 293–303; 1986.

    Article  PubMed  CAS  Google Scholar 

  • DeVries A. L.; Wohlschlag D. E. Freezing resistance in some Antarctic fishes. Science 163: 1073–1075; 1969.

    Article  PubMed  CAS  Google Scholar 

  • DeVries AL. Ice, antifreeze proteins and antifreeze genes in polar fishes. In: Barnes BM and Carey HV, eds., Life in the Cold: evolution, mechanism, adaptation and application. University of Alaska Press, Fairbanks, pp. 307-316, 2004

  • Duman J. G. Antifreeze and ice nucleator proteins in terrestrial arthropods. Ann Rev Physiol 63: 327–357; 2001.

    Article  CAS  Google Scholar 

  • Duman J. G.; Bennett V. A.; Sformo T.; Hochstrasser R.; Barnes B. M. Antifreeze proteins in Alaskan insects and spiders. J Insect Physiol 50: 259–266; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Duman J. G.; Neven L. G.; Beals J. M.; Olsen K. R.; Castellino F. J. Freeze tolerance adaptations, including protein and lipoproten ice nucleators, in larvae of the cranefly Tipula trivittata. J Insect Physiol 31: 1–9; 1985.

    Article  CAS  Google Scholar 

  • Duman J. G.; Olsen T. M. Thermal hysteresis activity in bacteria, fungi and primitive plants. Cryobiology 30: 322–328; 1993.

    Article  Google Scholar 

  • Duman J. G.; Parmalee D.; Goetz F. W.; Li N.; Wu D. W.; Benjamin T. Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol B 168: 225–232; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Duman J. G.; Walters K. R.; Sformo T.; Carrasco M. A.; Nickell P.; Barnes B. M. Antifreeze and ice nucleator proteins. In: Denlinger, D., and Lee, R. E., eds., Low Temperature Biology of Insects. Cambridge University Press, Cambridge, UK, pp. 59-90; 2010.

  • Eroglu A.; Russo M. J.; Bieganski R.; Fowler A.; Cheley S.; Bayley H.; Toner M. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18: 163–167; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Eroglu A.; Toner M.; Toth T. L. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil Steril 77(1): 152–158; 2002.

    Article  PubMed  Google Scholar 

  • Graether S. P.; Sykes B. D. Cold survival in freeze intolerant insects: the structure and function of beta-helical antifreeze proteins. Eur J Biochem 271: 3285–3296; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Griffith M.; Yaish M. W. Antifreeze proteins in plants: a tale of two activities. Trends Plant Sci 9: 399–405; 2004.

    Article  CAS  Google Scholar 

  • Hansen T. N.; Smith K. M.; Brockbank K. G. M. Type I antifreeze protein attenuates cell recoveries following cryopreservation. Transpl Proc 25(6): 3186–3188; 1993.

    Google Scholar 

  • Huang T.; Nicodemus J.; Zarka D. G.; Thomashow M. F.; Duman J. G. Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol 50: 333–344; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jia X.; Davies P. L. Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem Sci 27: 101–106; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Karow A. M. Biophysical and chemical considerations in cryopreservation. In: Karow A. M.; Pegg D. E. (eds) Organ preservation for transplantation. Marcel Dekker, Inc., New York, pp 113; 1981.

  • Knight C. A.; Duman J. G. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23: 256–262; 1986.

    Article  CAS  Google Scholar 

  • Langeaux D.; Huhtinen M.; Koskinen E.; Palmer E. Effect of antifreeze protein on the cooling and freezing of equine embryos as measured by DAPI-staining. Equine Vet J 25: 85–87; 1997.

    Google Scholar 

  • Lee C. Y.; Rubinsky B.; Fletcher G. L. Hypothermic preservation of whole mammalian liver with antifreeze proteins. Cryo Lett 13: 59–66; 1992.

    CAS  Google Scholar 

  • Lee R. E. A primer on insect cold tolerance. In: Denlinger D. L., Lee R. E. (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 3–34; 2010.

  • Li N.; Andorfer C. A.; Duman J. G. Enhancement of insect antifreeze protein activity by low molecular weight solutes. J Exp Biol 201: 2243–2251; 1998.

    PubMed  CAS  Google Scholar 

  • Lin X.; O’Tousa J. E.; Duman J. G. Expression of two self-enhancing antifreeze proteins from Dendroides canadensis in Drosophila melanogaster. J Insect Physiol 56: 341–349; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol 247(Cell Physiol 16): C125–C142; 1984.

    PubMed  CAS  Google Scholar 

  • Merryman H. Foreword. In: Fuller B. J.; Lane N.; Benson E. E. (eds) Life in the frozen state. CRC Press, Baton Rouge; 2004.

    Google Scholar 

  • Miyamoto Y.; Suzuki S.; Nomura K.; Enosawa S. Improvement of hepatocyte viability after cryopreservation by supplementation of long-chain oligosaccharide in the freezing medium in rats and humans. Cell Transplant 15: 911–919; 2006.

    Article  PubMed  Google Scholar 

  • Mondal B. A simple method for cryopreservation of MDBK cells using trehalose and storage at −80°C. Cell Tissue Bank 10(4): 341–344; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Mugnano J. A.; Wang T.; Layne Jr. J. R.; De Vries A. L.; Lee R. E. Antifreeze glycoproteins promote lethal intracellular freezing of rat cardiomyocytes at high subzero temperatures. Cryobiology 32: 556–557; 1995.

    Google Scholar 

  • Nicodemus J.; O’Tousa J. E.; Duman J. G. Expression of a beetle, Dendroides canadensis, antifreeze protein in Drosophila melanogaster. J Insect Physiol 52: 888–896; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Norris M. M.; Aksan A.; Sugimachi K.; Toner M. 3-O-methyl-D-glucose improves desiccation tolerance of keratinocytes. Tissue Eng 12: 1873–1879; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Oliver A. E.; Jamil K.; Crowe J. H.; Tablin F. Loading Human Mesenchymal Stem Cells with Trehalose by Fluid-Phase Endocytosis. Cell Preserv Technol 2(1): 35–49; 2004.

    Article  CAS  Google Scholar 

  • Pegg D. E. Antifreeze proteins. Cryobiology 29: 774–782; 1992.

    Google Scholar 

  • Petraya N.; Marshall C. B.; Celik Y.; Davies P. L.; Braslovsky I. Direct visualization of spruce budworm antifreeze protein interacting with ice. Basal plane affinity confers hyperactivity. Biophys J 95: 333–341; 2008.

    Article  Google Scholar 

  • Polge C.; Smith A. Y.; Parkes A. S. Revival of spermatozoa after vitrification and de-hydration at low temperatures. Nature 164: 666; 1949.

    Article  PubMed  CAS  Google Scholar 

  • Raymond J. A.; DeVries A. L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proceeding Natl Acad Sci USA 74: 2589–2593; 1977.

    Article  CAS  Google Scholar 

  • Raymond J. A.; Wilson P. W.; DeVries A. L. Inhibition of ice on non-basal planes of ice by fish antifreeze. Proceeding Natl Acad Sci USA 86: 881–885; 1989.

    Article  CAS  Google Scholar 

  • Redmond J.; Bolin R. B.; Cheney B. A. Glycerol-glucose cryopreservation of platelets. In vivo and in vitro observations. Transfusion 23(3): 213–214; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Rubinsky B.; Arav A.; De Vries A. L. Cryopreservation of oocytes using directional cooling and antifreeze glycoproteins. Cryo Lett 12: 93–106; 1991a.

    Google Scholar 

  • Rubinsky B.; Arav A.; De Vries A. L. The cryoprotective effect of antifreeze glycopeptides from Antartic fishes. Cryobiology 29: 69–79; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Rubinsky B.; Arav A.; Flecher G. L. Hypothermic protection—a fundamental property of antifreeze proteins. Biochem Biophys Res Commun 180: 566–571; 1991b.

    Article  PubMed  CAS  Google Scholar 

  • Rubinsky B.; Arav A.; Hong J. S.; Lee C. Y. Freezing of mammalian livers with glycerol and antifreeze proteins. Biomech Biophys Res Commun 200(2): 732–741; 1994.

    Article  CAS  Google Scholar 

  • Sformo T.; Walters K. R.; Jeannette K.; McIntyre J.; Wowk B.; Fahy G.; Barnes B. M.; Duman J. G. Supercooling, vitrification and limited survival to −100°C in larvae of the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae). J Exp Biol 213: 502–509; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Storey K. B.; Storey J. M. Biochemistry of cryoprotectants. In: Denlinger D. L.; Lee R. E. (eds) Insects at low temperature. Chapman and Hall, New York, pp 64–93; 1991.

  • Storey K. B.; Storey J. M. Physiology, biochemistry, and molecular biology of vertebrate freeze tolerance: the wood frog. In: Fuller B. J.; Lane N.; Benson E. E. (eds) Life in the frozen state. CRC Press, Baton Rouge, pp 243–274; 2004.

    Chapter  Google Scholar 

  • Tonczak M. M., Crowe J. H. The interaction of antifreeze proteins with model membrane and cells. In: Ewart K. V.; Hew C. L. (eds) Fish antifreeze proteins. World Scientific, New Jersey, pp 187–212; 2002

  • Walters K. R.; Serianni A. S.; Sformo T.; Barnes B. M.; Duman J. G. A thermal hysteresis-producing xylomannan antifreeze in a freeze tolerant Alaskan beetle. Proceeding Natl Acad Sci USA 106: 20210–20215; 2009.

    Article  CAS  Google Scholar 

  • Wang L.; Duman J. G. Antifreeze proteins of the beetle Dendroides canadensis enhance one another’s activities. Biochemistry 44: 10305–10312; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wang L.; Duman J. G. A thaumatin-like protein from larvae of the beetle Dendroides canadensis enhances the activity of antifreeze proteins. Biochemistry 45: 1278–1284; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wang T.; Zhu Q.; Yang X.; Layne Jr. J. R.; DeVries A. L. Antifreeze glycoproteins from the antartic notothenoid fishes fail to protect the rat cardiac explant during hypothermic and freezing preservation. Cryobiology 31: 185–192; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Wharton D. A.; Pow B.; Kristensen M.; Ramlov H.; Marshall C. J. Ice-active proteins and cryoprotectants from the New Zealand alpine cockroach Celatoblatta quinquemaculta. J Insect Physiol 55: 27–31; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Wolkers W. F.; Walker N. J.; Tablin F.; Crowe J. H. Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42: 79–87; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Younis A. I.; Rooks B.; Khan S.; Gould K. B. The effect of antifreeze peptide III and insulin transferrin selenium (ITS) on cryopreservation of chimpanzee spermatozoa. J Androl 19: 207–214; 1998.

    PubMed  CAS  Google Scholar 

  • Zachariassen K. E.; Hammel H. T. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262: 285–287; 1976.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF IOB06-18436 to JGD and R44DK081233 from the National Institute of Diabetes and Digestive and Kidney Diseases to KGMB. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin G. M. Brockbank.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockbank, K.G.M., Campbell, L.H., Greene, E.D. et al. Lessons from nature for preservation of mammalian cells, tissues, and organs. In Vitro Cell.Dev.Biol.-Animal 47, 210–217 (2011). https://doi.org/10.1007/s11626-010-9383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9383-2

Keywords

Navigation