Skip to main content

Advertisement

Log in

Mesenchymal stem cells require integrin β1 for directed migration induced by osteopontin in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are characterized by their ability of self-renewal paired with the capacity to differentiate into multiple mesenchymal cell lineages. Numerous studies have reported beneficial effects of MSCs in tissue repair and regeneration. After in vivo administration, MSCs home to and engraft to injured tissues. However, the molecular mechanisms are not clear. Osteopontin (OPN) has been found to be elevated in response to injury and inflammation and its role on cell mobilization has been studied. Therefore, the facts imply that OPN may contribute to the recruitment of MSCs to the sites of injury. In this study, using transwell assay, we found that rat bone marrow-derived mesenchymal stem cells (rMSCs) migrated towards OPN in a concentration-dependent manner. To further examine the involved molecular mechanisms for OPN-induced rMSCs migration, RT-PCR, and Western blot were used to detect the expressions of integrin β1 and CD44v6, the two receptors of OPN. OPN promoted integrin β1 mRNA and protein expression while CD44v6 mRNA level was not altered. Blockade of integrin β1 also inhibited OPN-induced rMSCs migration, indicating the possible involvement of integrin β1 in OPN-induced migration in rMSCs. Our data have shown for the first time that OPN increases integrin β1 expression in rMSCs and promotes rMSCs migration through the ligation to integrin β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Brakebusch C.; Fassler R. beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 24: 403–411; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Du X. L.; Jiang T.; Sheng X. G.; Gao R.; Li Q. S. Inhibition of osteopontin suppresses in vitro and in vivo angiogenesis in endometrial cancer. Gynecol. Oncol. 115: 371–376; 2009.

    Article  PubMed  CAS  Google Scholar 

  • El-Tanani M. K. Role of osteopontin in cellular signaling and metastatic phenotype. Front. Biosci. 13: 4276–4284; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Fong Y. C.; Hsu S. F.; Wu C. L.; Li T. M.; Kao S. T.; Tsai F. J.; Chen W. C.; Liu S. C.; Wu C. M.; Tang C. H. Transforming growth factor-beta1 increases cell migration and beta1 integrin up-regulation in human lung cancer cells. Lung Cancer 64: 13–21; 2009.

    Article  PubMed  Google Scholar 

  • Gao C.; Guo H.; Downey L.; Marroquin C.; Wei J.; Kuo P. C. Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis 24: 1871–1878; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Grassinger J.; Haylock D. N.; Storan M. J.; Haines G. O.; Williams B.; Whitty G. A.; Vinson A. R.; Be C. L.; Li S.; Sorensen E. S. et al. Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha9beta1 and alpha4beta1 integrins. Blood 114: 49–59; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hamada H.; Kobune M.; Nakamura K.; Kawano Y.; Kato K.; Honmou O.; Houkin K.; Matsunaga T.; Niitsu Y. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci. 96: 149–156; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter C. P.; Schwarz E. J.; Hess D.; Widenfalk J.; El Manira A.; Prockop D. J.; Olson L. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl Acad. Sci. USA 99: 2199–2204; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ip J. E.; Wu Y.; Huang J.; Zhang L.; Pratt R. E.; Dzau V. J. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol. Biol. Cell 18: 2873–2882; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic M.; Stefanoska I.; Radojcic L.; Vicovac L. Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1. Reproduction 139: 789–798; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri Y. U.; Sleeman J.; Fujii H.; Herrlich P.; Hotta H.; Tanaka K.; Chikuma S.; Yagita H.; Okumura K.; Murakami M. et al. CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res. 59: 219–226; 1999.

    PubMed  CAS  Google Scholar 

  • Khan S. A.; Cook A. C.; Kappil M.; Gunthert U.; Chambers A. F.; Tuck A. B.; Denhardt D. T. Enhanced cell surface CD44 variant (v6, v9) expression by osteopontin in breast cancer epithelial cells facilitates tumor cell migration: novel post-transcriptional, post-translational regulation. Clin. Exp. Metastasis 22: 663–673; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kim M. K.; Kim S. D.; Lee H. Y.; Lee S. Y.; Shim J. W.; Yun J.; Kim J. M.; Min do S.; Yoo Y. H.; Bae Y. S. Collagen-binding motif peptide, a cleavage product of osteopontin, stimulates human neutrophil chemotaxis via pertussis toxin-sensitive G protein-mediated signaling. FEBS Lett. 582: 3379–3384; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Koh A.; da Silva A. P.; Bansal A. K.; Bansal M.; Sun C.; Lee H.; Glogauer M.; Sodek J.; Zohar R. Role of osteopontin in neutrophil function. Immunology 122: 466–475; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kollar K.; Cook M. M.; Atkinson K.; Brooke G. Molecular mechanisms involved in mesenchymal stem cell migration to the site of acute myocardial infarction. Int. J. Cell Biol. 2009: 904682; 2009.

    PubMed  Google Scholar 

  • Li N.; Lu X.; Zhao X.; Xiang F. L.; Xenocostas A.; Karmazyn M.; Feng Q. Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells 27: 961–970; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Marcondes M. C.; Poling M.; Watry D. D.; Hall D.; Fox H. S. In vivo osteopontin-induced macrophage accumulation is dependent on CD44 expression. Cell. Immunol. 254: 56–62; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Mareschi K.; Ferrero I.; Rustichelli D.; Aschero S.; Gammaitoni L.; Aglietta M.; Madon E.; Fagioli F. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J. Cell. Biochem. 97: 744–754; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K.; Okada Y.; Yamanaka O.; Kitano A.; Ikeda K.; Kon S.; Uede T.; Rittling S. R.; Denhardt D. T.; Kao W. W. et al. Corneal wound healing in an osteopontin-deficient mouse. Investig. Ophthalmol. Vis. Sci. 49: 1367–1375; 2008.

    Article  Google Scholar 

  • Moon C.; Heo S.; Ahn M.; Kim H.; Shin M.; Sim K. B.; Kim H. M.; Shin T. Immunohistochemical study of osteopontin in the spinal cords of rats with clip compression injury. J. Vet. Med. Sci. 66: 1307–1310; 2004.

    Article  PubMed  Google Scholar 

  • Ortiz L. A.; Gambelli F.; McBride C.; Gaupp D.; Baddoo M.; Kaminski N.; Phinney D. G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl Acad. Sci. USA 100: 8407–8411; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Raheja L. F.; Genetos D. C.; Yellowley C. E. Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway. Biochem. Biophys. Res. Commun. 366: 1061–1066; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Salem H. K.; Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28: 585–596; 2010.

    PubMed  CAS  Google Scholar 

  • Shevde L. A.; Das S.; Clark D. W.; Samant R. S. Osteopontin: an effector and an effect of tumor metastasis. Curr. Mol. Med. 10: 71–81; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Singh M.; Foster C. R.; Dalal S.; Singh K. Role of osteopontin in heart failure associated with aging. Heart Fail. Rev. 15: 487–494; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Sordi V. Mesenchymal stem cell homing capacity. Transplantation 87: S42–S45; 2009.

    Article  PubMed  Google Scholar 

  • Suzuki Y.; Yanagisawa M.; Yagi H.; Nakatani Y.; Yu R. K. Involvement of beta1-integrin up-regulation in basic fibroblast growth factor- and epidermal growth factor-induced proliferation of mouse neuroepithelial cells. J. Biol. Chem. 285: 18443–18451; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi F.; Takahashi K.; Okazaki T.; Maeda K.; Ienaga H.; Maeda M.; Kon S.; Uede T.; Fukuchi Y. Role of osteopontin in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 24: 264–271; 2001.

    PubMed  CAS  Google Scholar 

  • Tuck A. B.; Elliott B. E.; Hota C.; Tremblay E.; Chambers A. F. Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J. Cell. Biochem. 78: 465–475; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Wang K. X.; Denhardt D. T. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev. 19: 333–345; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y. P.; Liu B. Y. High expression of osteopontin and CD44v6 in odontogenic keratocysts. J. Formos. Med. Assoc. 108: 286–292; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yan Y. P.; Lang B. T.; Vemuganti R.; Dempsey R. J. Osteopontin is a mediator of the lateral migration of neuroblasts from the subventricular zone after focal cerebral ischemia. Neurochem. Int. 55: 826–832; 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural National Science Foundation of China (nos. 30770530 and 11032012), the State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, China (GZKF-201012), and the Natural Science Foundation Project of CQ CSTC (no. 2009bb5040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanbin Song.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, C., Song, G., Luo, Q. et al. Mesenchymal stem cells require integrin β1 for directed migration induced by osteopontin in vitro. In Vitro Cell.Dev.Biol.-Animal 47, 241–250 (2011). https://doi.org/10.1007/s11626-010-9377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9377-0

Keywords

Navigation