Skip to main content
Log in

Evaluation of suitable reference gene for real-time PCR in human umbilical cord mesenchymal stem cells with long-term in vitro expansion

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In real-time quantitative PCR, the accuracy of normalized data is highly dependent on the stability of the reference genes. However, reference gene expression in a given cell type or experimental condition can vary considerably. The goal of this study was to establish a reliable set of reference genes for real-time PCR studies using human umbilical cord mesenchymal stem cells with long-term in vitro expansion. The stability of ten potential reference genes was examined in human umbilical cord mesenchymal stem cells. We found that Ywhaz and Rpl13a, not beta-actin or Gapdh, were the most stably expressed of the internal control genes in different passages of human umbilical cord mesenchymal stem cells. Ywhaz and Rpl13a could be used as reference genes for relative gene quantification and normalization purposes in real-time PCR studies of human umbilical cord mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Andersen C. L.; Jensen J. L.; Orntoft T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 5245–5250; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Barry F. P.; Murphy J. M. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36: 568–584; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bonab M. M.; Alimoghaddam K.; Talebian F.; Ghaffari S. H.; Ghavamzadeh A.; Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7: 14; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Dheda K.; Huggett J. F.; Chang J. S.; Kim L. U.; Bustin S. A.; Johnson M. A.; Rook G. A.; Zumla A. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344: 141–143; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dominici M.; Le Blanc K.; Mueller I.; Slaper-Cortenbach I.; Marini F.; Krause D.; Deans R.; Keating A.; Prockop D.; Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Elberg G.; Elberg D.; Logan C. J.; Chen L.; Turman M. A. Limitations of commonly used internal controls for real-time RT-PCR analysis of renal epithelial–mesenchymal cell transition. Nephron Exp Nephrol 102: e113–e122; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes J. M.; Mommens M.; Hagen O.; Babiak I.; Solberg C. Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Physiol B Biochem Mol Biol 150: 23–32; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Fink T.; Lund P.; Pilgaard L.; Rasmussen J. G.; Duroux M.; Zachar V. Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure. BMC Mol Biol 9: 98; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Johansson S.; Fuchs A.; Okvist A.; Karimi M.; Harper C.; Garrick T.; Sheedy D.; Hurd Y.; Bakalkin G.; Ekstrom T. J. Validation of endogenous controls for quantitative gene expression analysis: application on brain cortices of human chronic alcoholics. Brain Res 1132: 20–28; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kim J.; Kang H. M.; Kim H.; Kim M. R.; Kwon H. C.; Gye M. C.; Kang S. G.; Yang H. S.; You J. Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 9: 581–594; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lu L. L.; Liu Y. J.; Yang S. G.; Zhao Q. J.; Wang X.; Gong W.; Han Z. B.; Xu Z. S.; Lu Y. X.; Liu D.; Chen Z. Z.; Han Z. C. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91: 1017–1026; 2006.

    PubMed  CAS  Google Scholar 

  • Moon J. H.; Lee J. R.; Jee B. C.; Suh C. S.; Kim S. H.; Lim H. J.; Kim H. K. Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod 23: 1760–1770; 2008.

    Article  PubMed  Google Scholar 

  • Park B. W.; Hah Y. S.; Kim D. R.; Kim J. R.; Byun J. H. Osteogenic phenotypes and mineralization of cultured human periosteal-derived cells. Arch Oral Biol 52: 983–989; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Perez R.; Tupac-Yupanqui I.; Dunner S. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol Biol 9: 79; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Selvey S.; Thompson E. W.; Matthaei K.; Lea R. A.; Irving M. G.; Griffiths L. R. Beta-actin—an unsuitable internal control for RT-PCR. Mol Cell Probes 15: 307–311; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J.; De Preter K.; Pattyn F.; Poppe B.; Van Roy N.; De Paepe A.; Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034; 2002.

    Article  PubMed  Google Scholar 

  • Weiss M. L.; Anderson C.; Medicetty S.; Seshareddy K. B.; Weiss R. J.; Vander Werff I.; Troyer D.; McIntosh K. R. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26: 2865–2874; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Willems E.; Mateizel I.; Kemp C.; Cauffman G.; Sermon K.; Leyns L. Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int J Dev Biol 50: 627–635; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ylostalo J.; Bazhanov N.; Prockop D. J. Reversible commitment to differentiation by human multipotent stromal cells in single-cell-derived colonies. Exp Hematol 36: 1390–1402; 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by 863 projects from Ministry Science & Technology of China (2006AA02A110), National Natural Science Foundation of China (30600238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongchao Han.

Additional information

Editor: J. Denry Sato

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Expression stability and housekeeping gene ranking based on geNorm calculations. The M values of reference genes of UC-MSCs at passage 7 are calculated. (DOC 38 kb)

Supplementary Figure 2

Expression stability and housekeeping gene ranking based on geNorm calculations. The M values of reference genes of UC-MSCs at passage 15 are calculated. (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Han, Z., Yan, S. et al. Evaluation of suitable reference gene for real-time PCR in human umbilical cord mesenchymal stem cells with long-term in vitro expansion. In Vitro Cell.Dev.Biol.-Animal 46, 595–599 (2010). https://doi.org/10.1007/s11626-010-9318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9318-y

Keywords

Navigation