Skip to main content

Advertisement

Log in

Osteogenic and adipogenic differentiation potential of an immortalized fibroblast-like cell line derived from porcine peripheral blood

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Primary fibroblast-like cells isolated from the peripheral blood of a healthy pig were immortalized by transduction of cells with a replication-defective retrovirus vector expressing the E6/E7 proteins of human papillomavirus type 16 (pLXSN-16E6E7). The immortalized cells grow rapidly in cell culture and exhibit a distinct cell surface phenotype that was positive for CD90, CD44, collagen I, and vimentin and negative for CD14 and MHC II. Additionally, these immortalized blood derived-fibroblast-like cells had the potential to differentiate into osteoblasts and adipocytes in vitro as evidenced by the deposition of calcium, increased alkaline phosphatase activity, upregulated osteogenic and adipogenic marker gene expression, and accumulation of fat droplets in cells when osteogenic (dexamethasone, ascorbic acid, and β-glycerophosphate) or adipogenic supplements (dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin) were added to the culture. Overall, the results suggest that the immortalized blood-derived fibroblast-like cells exhibit some of the features of mesenchymal precursor cells, which may have implications in tissue repair and remodeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Reference

  • Aslan H.; Zilberman Y.; Kandel L.; Liebergall M.; Oskouian R. J.; Gazit D.; Gazit Z. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+cells. Stem Cells 24: 1728–1737; 2006. doi:10.1634/stemcells.2005-0546.

    Article  PubMed  Google Scholar 

  • Beresford J. N.; Bennett J. H.; Devlin C.; Leboy P. S.; Owen M. E. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell. Sci. 102Pt 2: 341–351; 1992.

    CAS  PubMed  Google Scholar 

  • Bochev I.; Elmadjian G.; Kyurkchiev D.; Tzvetanov L.; Altankova I.; Tivchev P.; Kyurkchiev S. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol. Int. 32: 384–393; 2008. doi:10.1016/j.cellbi.2007.12.007.

    Article  CAS  PubMed  Google Scholar 

  • Bruder S. P.; Jaiswal N.; Haynesworth S. E. Growth knetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64: 278–294; 1997. doi:10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  • Campagnoli C.; Roberts I. A.; Kumar S.; Bennett P. R.; Bellantuono I.; Fisk N. M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98: 2396–2402; 2001. doi:10.1182/blood.V98.8.2396.

    Article  CAS  PubMed  Google Scholar 

  • Chesney J.; Bucala R. Peripheral blood fibrocytes: mesenchymal precursor cells and the pathogenesis of fibrosis. Curr. Rheumatol. Rep. 2: 501–505; 2000. doi:10.1007/s11926-000-0027-5.

    Article  CAS  PubMed  Google Scholar 

  • Covas D. T.; Panepucci R. A.; Fontes A. M.; Silva W. A. Jr.; Orellana M. D.; Freitas M. C.; Neder L.; Santos A. R.; Peres L. C.; Jamur M. C.; Zago M. A. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+perivascular cells and fibroblasts. Exp. Hematol. 36: 642–654; 2008. doi:10.1016/j.exphem.2007.12.015.

    Article  CAS  PubMed  Google Scholar 

  • De Ugarte D. A.; Morizono K.; Elbarbary A.; Alfonso Z.; Zuk P. A.; Zhu M.; Dragoo J. L.; Ashjian P.; Thomas B.; Benhaim P.; Chen I.; Fraser J.; Hedrick M. H. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174: 101–109; 2003. doi:10.1159/000071150.

    Article  PubMed  Google Scholar 

  • Donofrioa G.; Colleonib S.; Gallib C.; Lazzarib G.; Cavirania S.; Flamminia C. F. Susceptibility of bovine mesenchymal stem cells to bovine herpesvirus 4. J. Virol. Methods 127: 168–170; 2005. doi:10.1016/j.jviromet.2005.02.019.

    Article  CAS  Google Scholar 

  • Fickert S.; Fiedler J.; Brenner R. E. Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthr. Cartil. 11: 790–800; 2003. doi:10.1016/S1063-4584(03)00167-5.

    Article  CAS  PubMed  Google Scholar 

  • Halbert C. L.; Demers G. W.; Galloway D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65: 473–478; 1991.

    CAS  PubMed  Google Scholar 

  • Haniffa M. A.; Wang X. N.; Holtick U.; Rae M.; Isaacs J. D.; Dickinson A. M.; Hilkens C. M.; Collin M. P. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J. Immunol. 179: 1595–1604; 2007.

    CAS  PubMed  Google Scholar 

  • Jager M.; Wild A.; Lensing-Hohn S.; Krauspe R. Influence of different culture solutions on osteoblastic differentiation in cord blood and bone marrow derived progenitor cells. Biomed. Tech. (Berl) 48: 241–244; 2003.

    Article  CAS  Google Scholar 

  • Johnson G. A.; Burghardt R. C.; Newton G. R.; Bazer F. W.; Spencer T. E. Development and characterization of immortalized ovine endometrial cell lines. Biol. Reprod. 61: 1324–1330; 1999. doi:10.1095/biolreprod61.5.1324.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen C.; Djouad F.; Fritz V.; Apparailly F.; Plence P.; Noel D. Mesenchymal stem cells and rheumatoid arthritis. Jt. Bone Spine 70: 483–485; 2003. doi:10.1016/j.jbspin.2003.08.001.

    Article  Google Scholar 

  • Koerner J.; Nesic D.; Romero J. D.; Brehm W.; Mainil-Varlet P.; Grogan S. P. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 24: 1613–1619; 2006. doi:10.1634/stemcells.2005-0264.

    Article  CAS  PubMed  Google Scholar 

  • Parsons C. H.; Szomju B.; Kedes D. H. Susceptibility of human fetal mesenchymal stem cells to Kaposi sarcoma-associated herpesvirus. Blood 104: 2736–2738; 2004. doi:10.1182/blood-2004-02-0693.

    Article  CAS  PubMed  Google Scholar 

  • Phinney D. G.; Kopen G.; Isaacson R. L.; Prockop D. J. Plastic adhereent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J. Cell. Biochem. 72: 570–585; 1999. doi:10.1002/(SICI)1097-4644(19990315)72:4<570::AID-JCB12>3.0.CO;2-W.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147; 1999. doi:10.1126/science.284.5411.143.

    Article  CAS  PubMed  Google Scholar 

  • Ringe J.; Kaps C.; Schmitt B.; Buscher K.; Bartel J.; Smolian H.; Schultz O.; Burmester G. R.; Haupl T.; Sittinger M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res. 307: 321–327; 2002. doi:10.1007/s00441-002-0525-z.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini F.; Petecchia L.; Tavian M.; de Villeroche V. J.; Rossi G. A.; Brouty-Boye D. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab. Invest. 85: 961–972; 2005.

    Article  CAS  Google Scholar 

  • Shima Y.; Okamoto T.; Aoyama T.; Yasura K.; Ishibe T.; Nishijo K.; Shibata K. R.; Kohno Y.; Fukiage K.; Otsuka S.; Uejima D.; Nakayama T.; Nakamura T.; Kiyono T.; Toguchida J. In vitro transformation of mesenchymal stem cells by oncogenic H-rasVal12. Biochem. Biophys. Res. Commun. 353: 60–66; 2007. doi:10.1016/j.bbrc.2006.11.137.

    Article  CAS  PubMed  Google Scholar 

  • Sundin M.; Örvell C.; Rasmusson I.; Sundberg B.; Ringdén O.; Blanc K. L. Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual. Bone Marrow Transplant. 37: 1051–1059; 2006. doi:10.1038/sj.bmt.1705368.

    Article  CAS  PubMed  Google Scholar 

  • Suradhat S.; Thanawongnuwech R.; Poovorawan Y. Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus. J. Gen. Virol. 84: 453–459; 2003. doi:10.1099/vir.0.18698-0.

    Article  CAS  PubMed  Google Scholar 

  • Tropel P.; Noel D.; Platet N.; Legrand P.; Benabid A. L.; Berger F. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell. Res. 295: 395–406; 2004. doi:10.1016/j.yexcr.2003.12.030.

    Article  CAS  PubMed  Google Scholar 

  • Vacanti V.; Kong E.; Suzuki G.; Sato K.; Canty J. M.; Lee T. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J. Cell. Physiol. 205: 194–201; 2005. doi:10.1002/jcp.20376.

    Article  CAS  PubMed  Google Scholar 

  • Wang X.; Rosa A. J.; Oliverira H. N.; Rosa G. J.; Guo X.; Travnicek M.; Girshick T. Transcriptome of local innate and adaptive immunity during early phase of infectious bronchitis viral infection. Viral. Immunol. 19: 768–774; 2006. doi:10.1089/vim.2006.19.768.

    Article  CAS  PubMed  Google Scholar 

  • Yu M.; Xiao Z.; Shen L.; Li L. Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. Br. J. Haematol. 124: 666–675; 2004. doi:10.1111/j.1365-2141.2004.04826.x.

    Article  PubMed  Google Scholar 

  • Zhao Y.; Glesne D.; Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 100: 2426–2431; 2003. doi:10.1073/pnas.0536882100.

    Article  CAS  PubMed  Google Scholar 

  • Zvaifler N. J.; Marinova-Mutafchieva L.; Adams G.; Edwards C. J.; Moss J.; Burger J. A.; Maini R. N. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2: 477–488; 2000. doi:10.1186/ar130.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hongmei Li for the technical help in oil red O staining. We also thank Dr. Jeff Clapper and Mr. Dean Peters for providing us with pig blood. This work was partly supported by the South Dakota Agriculture Experiment Station and by NSF/EPSCoR #EPS-0091948 and by the State of South Dakota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqing Wang.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Moutsoglou, D. Osteogenic and adipogenic differentiation potential of an immortalized fibroblast-like cell line derived from porcine peripheral blood. In Vitro Cell.Dev.Biol.-Animal 45, 584–591 (2009). https://doi.org/10.1007/s11626-009-9231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9231-4

Keywords

Navigation