Skip to main content
Log in

Transforming growth factor-β1 (TGF-β1) and acetylcholine (ACh) alter nitric oxide (NO) and interleukin-1β (IL-1β) secretion in human colon adenocarcinoma cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Colon adenocarcinoma is one of the most common fatal malignancies in Western countries. Progression of this cancer is dependent on tumor microenvironmental signaling molecules such as transforming growth factor-β (TGF-β) or acetylcholine (ACh). The present study was conducted to assess the influence of recombinant human transforming growth factor (rhTGF)-β1 or ACh on nitric oxide (NO) and interleukin-1β (IL-1β) secretion by three human colon adenocarcinoma cell lines: HT29, LS180, and SW948, derived from different grade tumors (Duke’s stage). The cells were cultured in 2D and 3D (spheroids) conditions. Colon carcinoma cells exhibited different sensitivities to rhTGF-β1 or ACh dependent on the tumor grade and the culture model. ACh exhibited significant inhibitory effects towards NO, endothelial nitric oxide synthase (eNOS), and IL-1β secretion especially by tumor cells derived form Duke’s C stage of colon carcinoma. rhTGF-β1 also decreased NO, IL-1β, and eNOS expression, but its effect was lower than that observed after the administration of ACh. The inhibition of NO and IL-1β production was more striking in 3D tumor spheroids than in 2D culture monolayers. Taken together, the TGF-β1–ACh axis may regulate colon carcinoma progression and metastasis by altering NO secretion and influence inflammatory responses by modulating IL-1β production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Apte R. N.; Dotan S.; Elkabets M.; White M. R.; Reich E.; Carmi Y.; Song X.; Dvozkin T.; Krelin Y.; Voronov E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor–host interactions. Cancer Metastasis Rev. 25: 387–408; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ashwood P.; Harvey R.; Verjee T.; Wolstencroft R.; Thompson R. P. H.; Powell J. J. Competition between IL-1, IL-1ra and TGF-β1 modulates the response of the ELA4.NOB-1/CTLL bioassay: implications for clinical investigations. Inflamm. Res. 53: 60–65; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Basu S.; Dasgupta P. S. Decreased dopamine receptor expression and its second-messenger camp in malignant human colon tissue. Dig. Dis. Sci. 44: 916–921; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bellone G.; Carbone A.; Tibaudi D.; Mauri F.; Ferrero I.; Smirne C.; Suman F.; Rivetti C.; Migliaretti G.; Camandona M.; Palestro G.; Emanuelli G.; Rodeck U. Differential expression of transforming growth factors-β1, -β2 and -β3 in human colon carcinoma. Eur. J. Cancer 37: 224–233; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bonavida B.; Khineche S.; Huerta-Yepez S.; Garbán H. Therapeutic potential of nitric oxide in cancer. Drug Resist. Updat. 9: 157–173; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Cheng K.; Zimniak P.; Raufman J.-P. Transactivation of the epidermal growth factor receptor mediates cholinergic agonist-induced proliferation of H508 human colon cancer cells. Cancer Res. 63: 6744–6750; 2003.

    PubMed  CAS  Google Scholar 

  • Español A.; Eiján A. M.; Mazzoni E.; Davel L.; Jasnis M. A.; Sacerdote De Lustig E.; Sales M. E. Nitric oxide synthase, arginase and cyclooxygenase are involved in muscarinic receptor activation in different murine mammary adenocarcinoma cell lines. Int. J. Mol. Med. 9: 651–657; 2002.

    PubMed  Google Scholar 

  • Eutamene H.; Theodorou V.; Fioramonti J.; Bueno L. Implicatin of NK1 and NK2 receptors in rat colonic hypersecretion induced by interleukin 1β: role of nitric oxide. Gastroenterology 109: 483–489; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Galizia G.; Orditura M.; Romano C.; Lieto E.; Castellano P.; Pelosio L.; Imperatore V.; Catalano G.; Pignatelli C.; De Vita F. Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin. Immunol. 102: 169–178; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Greco E.; Basso D.; Fogar P.; Mazza S.; Navaglia F.; Zambon C. F.; Falda A.; Pedrazzoli S.; Ancona E.; Plebani M. Pancreatic cancer cells invasiveness is mainly affected by interleukin-1β not by transforming growth factor-β1. Int. J. Biol. Markers 20: 235–241; 2005.

    PubMed  CAS  Google Scholar 

  • Hill M. J. Molecular and clinical risk markers in colon cancer trials. Eur. J. Cancer 36: 1288–1291; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Joseph J.; Niggemann B.; Zaenker K. S.; Entschladen F. Anandamide is a endogenous inhibitor for the migration of tumor cells and T lymphocytes. Cancer Immunol. Immunother. 53: 723–728; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lala P. K.; Chakraborty Ch. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 3: 149–156; 2001.

    Article  Google Scholar 

  • Lewis A. M.; Varghese S.; Xu H.; Alexander H. R. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J. Translat. Med. 4: 48–59; 2006.

    Article  Google Scholar 

  • Li F.; Cao J.; Townsend C. M. Jr.; Ko T. C. TGF-β signalling in colon cancer cells. World J. Surg. 29: 306–311; 2005.

    Article  PubMed  Google Scholar 

  • Lohm S.; Peduto-Eberl L.; Lagadec P.; Renggli-Zulliger N.; Dudler J.; Jeannin J.-F.; Juillerat-Jeanneret L. Evaluation of the interaction between TGF-β and nitric oxide in the mechanisms of progression of colon carcinoma. Clin. Exp. Metastasis 22: 341–349; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Moilanen E.; Vapaatalo H. Nitric oxide in inflammation and immune response. Ann. Med. 27: 359–367; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Paduch R.; Walter-Croneck A.; Zdzisińska B.; Szuster-Ciesielska A.; Kandefer-Szerszeń M. Role of reactive oxygen species (ROS), metalloproteinase-2 (MMP-2) and interleukin-6 (IL-6) in direct interactions between tumour cell spheroids and endothelial cell monolayer. Cell Biol. Int. 29: 497–505; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Quyyumi A. A.; Dakak N.; Mulcahy D.; Andrews N. P.; Husain S.; Panza J. A.; Cannon R. O. III Nitric oxide activity in the atherosclerotic human coronary circulation. J. Am. Coll. Cardiol. 29: 308–317; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Rao A. A.; Sridhar G. R.; Das U. N. Elevated butyrylcholinesterase and acetylcholineesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med. Hypotheses 69: 1272–1276; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rao Ch. V. Nitric oxide signalling in colon cancer chemoprevention. Mutat. Res. 555: 107–119; 2004.

    PubMed  CAS  Google Scholar 

  • Ruscetti F. W.; Dubois C. M.; Jacobsen S. E.; Keller J. R. Transforming growth factor β and interleukin-1: a paradigm for opposing regulation of haemopoiesis. Baillieres Clin. Haematol. 5: 703–721; 1992.

    PubMed  CAS  Google Scholar 

  • Shen Z.-X. Rationale for diagnosing deficiency of ChEs and for applying exogenous HuChEs to the treatment of diseases. Med. Hypotheses 70: 43–51; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Song P.; Sekhon H. S.; Proskocil B.; Blusztajn J. K.; Mark G. P.; Spindel E. R. Synthesis of acetylcholine by lung cancer. Life Sci. 72: 2159–2168; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tozer G. M.; Prise V. E.; Bell K. M.; Dennis M. F.; Stratford M. R.; Chaplin D. J. Reduced capacity of tumour blood vessels to produce endothelium-derived relaxing factor: significance for blood flow modification. Br. J. Cancer 74: 1955–1960; 1996.

    PubMed  CAS  Google Scholar 

  • Tsushima H.; Kawata S.; Tamura S.; Ito N.; Shirai Y.; Kiso S.; Imai Y.; Shimomukai H.; Nomura Y.; Matsuda Y.; Matsuzawa Y. High levels of transforming growth factor β1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110: 375–382; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ukegawa J.-I.; Takeuchi Y.; Kusayanagi S.; Mitamura K. Growth-promoting effect of muscarinic acatylcholine receptors in colon cancer cells. J. Cancer Res. Clin. Oncol. 129: 272–278; 2003.

    PubMed  CAS  Google Scholar 

  • Yeh R. K.; Chen J.; Williams J. L.; Baluch M.; Hundley T. R.; Rosenbaum R. E.; Kalala S.; Traganos F.; Benardini F.; del Soldato P.; Kashfi K.; Rigas B. NO-donating nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit colon cancer cell growth more potently than traditional NSAIDs: a general pharmacological property? Biochem. Pharmacol. 67: 2197–2205; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Yudoh K.; Matsui H.; Tsuji H. Nitric oxide induced by tumor cells activates tumor cell adhesion to endothelial cells and permeability of the endothelium in vitro. Clin. Exp. Metastasis 15: 557–567; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Paduch.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paduch, R., Kandefer-Szerszeń, M. Transforming growth factor-β1 (TGF-β1) and acetylcholine (ACh) alter nitric oxide (NO) and interleukin-1β (IL-1β) secretion in human colon adenocarcinoma cells. In Vitro Cell.Dev.Biol.-Animal 45, 543–550 (2009). https://doi.org/10.1007/s11626-009-9220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9220-7

Keywords

Navigation