Skip to main content
Log in

Precision-cut slice cultures of tumors from MMTV-neu mice for the study of the ex vivo response to cytokines and cytotoxic drugs

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Ex vivo analysis of signaling pathways operating in tumor tissue is complicated by the three-dimensional structure, in particular by stroma–epithelial interactions. Studies performed with pure populations of tumor cells usually do not take into account this issue. One possibility to preserve the tissue architecture is the use of tumor slices. However, diffusion of oxygen and nutrients may become limiting factors, resulting in decreased cell viability and change of tissue morphology, especially after long-term incubation of slices. By using precision cut slices of defined thickness, we were able to establish culture conditions for tumor material obtained from MMTV-neu transgenic mice, which allow the study of the action of cytokines and cytotoxic drugs for up to 24 h. A slice thickness of 160 μm was found to be optimal for viability and handling of material. These slices were highly responsive to the action of the cytokine IFN-γ, as evident form the increase of pY701 STAT1, detected by both immunohistochemistry and western blotting, and by the increase of mRNA levels of the IFN-γ response genes IRF-1, SOCS-1, and STAT1, analyzed by reverse transcriptase–polymerase chain reaction. Furthermore, induction of apoptosis and increase of DNA damage could be monitored after treatment with IFN-γ or doxorubicin. The slices were also a convenient source for the establishment of explant cultures of tumor epithelial cells. It is concluded that cultivation of precision-cut tumor slices provides a convenient way for the ex vivo molecular analysis of MMTV-neu tumor tissue under conditions which closely simulate the situation in vivo and can provide an alternative to in vivo experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Blauer M.; Tammela T. L.; Ylikomi T. A novel tissue-slice culture model for non-malignant human prostate. Cell Tissue Res. 332: 489–498; 2008. doi:10.1007/s00441-008-0602-z.

    Article  PubMed  CAS  Google Scholar 

  • Campbell M. J.; Wollish W. S.; Lobo M.; Esserman L. J. Epithelial and fibroblast cell lines derived from a spontaneous mammary carcinoma in a MMTV/neu transgenic mouse. In Vitro Cell Dev. Biol. Anim. 38: 326–333; 2002. doi:10.1290/1071-2690(2002)038<0326:EAFCLD>2.0.CO;2.

    Article  PubMed  CAS  Google Scholar 

  • Guy C. T.; Webster M. A.; Schaller M.; Parsons T. J.; Cardiff R. D.; Muller W. J. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U S A. 89: 10578–10582; 1992. doi:10.1073/pnas.89.22.10578.

    Article  PubMed  CAS  Google Scholar 

  • Haffner M. C.; Jurgeit A.; Berlato C.; Geley S.; Parajuli N.; Yoshimura A.; Doppler W. Interaction and functional interference of glucocorticoid receptor and SOCS1. J. Biol. Chem. 283: 22089–22096; 2008. doi:10.1074/jbc.M801041200.

    Article  PubMed  CAS  Google Scholar 

  • Haffner M. C.; Petridou B.; Peyrat J. P.; Revillion F.; Muller-Holzner E.; Daxenbichler G.; Marth C.; Doppler W. Favorable prognostic value of SOCS2 and IGF-I in breast cancer. BMC Cancer 7: 136; 2007. doi:10.1186/1471-2407-7-136.

    Article  PubMed  Google Scholar 

  • Jurgeit A.; Berlato C.; Obrist P.; Ploner C.; Massoner P.; Schmolzer J.; Haffner M. C.; Klocker H.; Huber L. A.; Geley S.; Doppler W. Insulin-like growth factor-binding protein-5 enters vesicular structures but not the nucleus. Traffic 8: 1815–1828; 2007. doi:10.1111/j.1600-0854.2007.00655.x.

    Article  PubMed  CAS  Google Scholar 

  • Kass L.; Erler J. T.; Dembo M.; Weaver V. M. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int. J. Biochem. Cell. Biol. 39: 1987–1994; 2007. doi:10.1016/j.biocel.2007.06.025.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick J. E.; Estes J. M.; Straughn J. M. Jr.; Alvarez R. D.; Buchsbaum D. J. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its therapeutic potential in breast and gynecologic cancers. Gynecol. Oncol. 106: 614–621; 2007. doi:10.1016/j.ygyno.2007.05.035.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick J. E.; Straughn J. M. Jr.; Oliver P. G.; Wang W.; Nan L.; Grizzle W. E.; Stockard C. R.; Alvarez R. D.; Buchsbaum D. J. Anti-tumor activity of the TRA-8 anti-DR5 antibody in combination with cisplatin in an ex vivo human cervical cancer model. Gynecol. Oncol. 108: 591–597; 2008. doi:10.1016/j.ygyno.2007.11.039.

    Article  PubMed  CAS  Google Scholar 

  • Kern M. A.; Haugg A. M.; Eiteneuer E.; Konze E.; Drebber U.; Dienes H. P.; Breuhahn K.; Schirmacher P.; Kasper H. U. Ex vivo analysis of antineoplastic agents in precision-cut tissue slices of human origin: effects of cyclooxygenase-2 inhibition in hepatocellular carcinoma. Liver Int. 26: 604–612; 2006. doi:10.1111/j.1478-3231.2006.01268.x.

    Article  PubMed  CAS  Google Scholar 

  • Kirby T. O.; Rivera A.; Rein D.; Wang M.; Ulasov I.; Breidenbach M.; Kataram M.; Contreras J. L.; Krumdieck C.; Yamamoto M.; Rots M. G.; Haisma H. J.; Alvarez R. D.; Mahasreshti P. J.; Curiel D. T. A novel ex vivo model system for evaluation of conditionally replicative adenoviruses therapeutic efficacy and toxicity. Clin. Cancer Res. 10: 8697–8703; 2004. doi:10.1158/1078-0432.CCR-04-1166.

    Article  PubMed  CAS  Google Scholar 

  • Kolodkin-Gal D.; Zamir G.; Edden Y.; Pikarsky E.; Pikarsky A.; Haim H.; Haviv Y. S.; Panet A. Herpes simplex virus type 1 preferentially targets human colon carcinoma: role of extracellular matrix. J. Virol. 82: 999–1010; 2008. doi:10.1128/JVI.01769-07.

    Article  PubMed  CAS  Google Scholar 

  • Kunz-Schughart L. A. Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol. Int. 23: 157–161; 1999. doi:10.1006/cbir.1999.0384.

    Article  PubMed  CAS  Google Scholar 

  • Kurz E. U.; Douglas P.; Lees-Miller S. P. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J. Biol. Chem. 279: 53272–53281; 2004. doi:10.1074/jbc.M406879200.

    Article  PubMed  CAS  Google Scholar 

  • Lang D. S.; Droemann D.; Schultz H.; Branscheid D.; Martin C.; Ressmeyer A. R.; Zabel P.; Vollmer E.; Goldmann T. A novel human ex vivo model for the analysis of molecular events during lung cancer chemotherapy. Respir. Res. 8: 43; 2007. doi:10.1186/1465-9921-8-43.

    Article  PubMed  Google Scholar 

  • Lerche-Langrand C.; Toutain H. J. Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology 153: 221–253; 2000. doi:10.1016/S0300-483X(00)00316-4.

    Article  PubMed  CAS  Google Scholar 

  • Levy D. E.; Darnell J. E. Jr. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3: 651–662; 2002. doi:10.1038/nrm909.

    Article  PubMed  CAS  Google Scholar 

  • Lollini P. L.; Cavallo F.; Nanni P.; Forni G. Vaccines for tumour prevention. Nat. Rev. Cancer 6: 204–216; 2006. doi:10.1038/nrc1815.

    Article  PubMed  CAS  Google Scholar 

  • Olinga P.; Groen K.; Hof I. H.; De Kanter R.; Koster H. J.; Leeman W. R.; Rutten A. A.; Van Twillert K.; Groothuis G. M. Comparison of five incubation systems for rat liver slices using functional and viability parameters. J. Pharmacol. Toxicol. Methods 38: 59–69; 1997. doi:10.1016/S1056-8719(97)00060-9.

    Article  PubMed  CAS  Google Scholar 

  • Parrish A. R.; Gandolfi A. J.; Brendel K. Precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci. 57: 1887–1901; 1995. doi:10.1016/0024-3205(95)02176-J.

    Article  PubMed  CAS  Google Scholar 

  • Parrish A. R.; Sallam K.; Nyman D. W.; Orozco J.; Cress A. E.; Dalkin B. L.; Nagle R. B.; Gandolfi A. J. Culturing precision-cut human prostate slices as an in vitro model of prostate pathobiology. Cell Biol. Toxicol. 18: 205–219; 2002. doi:10.1023/A:1015567805460.

    Article  PubMed  CAS  Google Scholar 

  • Pei X. F.; Noble M. S.; Davoli M. A.; Rosfjord E.; Tilli M. T.; Furth P. A.; Russell R.; Johnson M. D.; Dickson R. B. Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cell Dev. Biol. Anim. 40: 14–21; 2004. doi:10.1290/1543-706X(2004)40<14:ECOPMT>2.0.CO;2.

    Article  PubMed  Google Scholar 

  • Piechocki M. P. A stable explant culture of HER2/neu invasive carcinoma supported by alpha-smooth muscle actin expressing stromal cells to evaluate therapeutic agents. BMC Cancer 8: 119; 2008. doi:10.1186/1471-2407-8-119.

    Article  PubMed  Google Scholar 

  • Schmidt K.; Werner-felmayer G.; Mayer B.; Werner E. R. Preferential inhibition of inducible nitric oxide synthase in intact cells by the 4-amino analogue of tetrahydrobiopterin. Eur. J. Biochem. 259: 25–31; 1999. doi:10.1046/j.1432-1327.1999.00003.x.

    Article  PubMed  CAS  Google Scholar 

  • Shekhar M. P.; Pauley R.; Heppner G. Host microenvironment in breast cancer development: extracellular matrix–stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res. 5: 130–135; 2003. doi:10.1186/bcr580.

    Article  PubMed  CAS  Google Scholar 

  • Tlsty T. D.; Coussens L. M. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. 1: 119–150; 2006. doi:10.1146/annurev.pathol.1.110304.100224.

    Article  PubMed  CAS  Google Scholar 

  • Toutain H. J.; Moronvalle-Halley V.; Sarsat J. P.; Chelin C.; Hoet D.; Leroy D. Morphological and functional integrity of precision-cut rat liver slices in rotating organ culture and multiwell plate culture: effects of oxygen tension. Cell Biol. Toxicol. 14: 175–190; 1998. doi:10.1023/A:1007458408863.

    Article  PubMed  CAS  Google Scholar 

  • Ursini-Siegel J.; Schade B.; Cardiff R. D.; Muller W. J. Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat. Rev. Cancer 7: 389–397; 2007. doi:10.1038/nrc2127.

    Article  PubMed  CAS  Google Scholar 

  • van der Kuip H.; Murdter T. E.; Sonnenberg M.; McClellan M.; Gutzeit S.; Gerteis A.; Simon W.; Fritz P.; Aulitzky W. E. Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment. BMC Cancer 6: 86; 2006. doi:10.1186/1471-2407-6-86.

    Article  PubMed  Google Scholar 

  • Woods A.; Sherwin T.; Sasse R.; MacRae T. H.; Baines A. J.; Gull K. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93Pt 3: 491–500; 1989.

    PubMed  Google Scholar 

Download references

Acknowledgment

Grant support: Integrated Center for Research and Therapy (IFTZ) of Innsbruck Medical University (W. Doppler); Doctorate program MCBO funded by the Austrian Science Fund FWF (N. Parajuli). We would like to thank Martina Chamson, Anto Nogalo, Sonja Philipp and Stefanie Faserl for their excellent technical assistance and Dr. Karl Maly for his help in the calibration of thickness of tumor slices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Doppler.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parajuli, N., Doppler, W. Precision-cut slice cultures of tumors from MMTV-neu mice for the study of the ex vivo response to cytokines and cytotoxic drugs. In Vitro Cell.Dev.Biol.-Animal 45, 442–450 (2009). https://doi.org/10.1007/s11626-009-9212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9212-7

Keywords

Navigation