Skip to main content
Log in

Establishment and characterization of OS 99-1, a cell line derived from a highly aggressive primary human osteosarcoma

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Osteosarcoma is the most common form of primary bone cancer. In this study, we established a human osteosarcoma cell line (OS 99-1) from a highly aggressive primary tumor. G-banding karyotype analysis demonstrated a large number of clonal abnormalities, as well as extensive intercellular heterogeneity. Through the use of immunologic, molecular, and biochemical analyses, we characterized protein and gene expression profiles confirming the osteogenic nature of the cells. Further evaluation indicated that OS 99-1 cells maintain the capacity to differentiate in an in vitro mineralization assay as well as form tumors in the in vivo chicken embryo model. This cell line provides a useful tool to investigate the molecular mechanisms contributing to osteosarcoma and may have the potential to serve as a culture system for studies involving bone physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Abbreviations

ALP:

tissue nonspecific alkaline phosphatase

ARS:

Alizarin Red S

BSP:

bone sialoprotein

LOH:

loss of heterogeneity

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

OC:

osteocalcin

OS:

osteosarcoma

PVDF:

polyvinylidene fluoride

qRT-PCR:

quantitative real-time reverse transcriptase PCR

References

  • Ballester M.; Castello A. et al. Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals. Biotechniques 37: 610–613; 2004.

    PubMed  CAS  Google Scholar 

  • Belchis D.A. and Gocke C.D. Alterations in the RB, p16, and cyclin D1 cell cycle control pathway in osteosarcomas. Pediatr. Pathol. Mol. Med. 19: 377–389; 2000.

    Article  CAS  Google Scholar 

  • Biegel J. A.; Womer R.B. et al. Complex karyotypes in a series of pediatric osteosarcomas. Cancer Genet. Cytogenet. 38: 89–100; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Bilbe G.; Roberts G. et al. PCR phenotyping of cytokines, growth factors and their receptors and bone matrix proteins in human osteoblast-like cell lines. Bone 19: 437–445; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Boehm A.K.; Neff, J.R. et al. Cytogenetic findings in 36 osteosarcoma specimens and a review of the literature. Pediatr. Pathol. Mol. Med. 19: 359–376; 2000.

    Article  Google Scholar 

  • Bridge J.; Nelson M. et al. Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet. Cytogenet. 95: 74–87; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Chauveinc L.; Mosseri V. et al. Osteosarcoma following retinoblastoma: age at onset and latency period. Ophthalmic Genet. 22: 77–88; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Fisher L.W.; Stubbs J.T. et al. Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop. Scand. Suppl. 266: 62–65; 1995.

    Google Scholar 

  • Fletcher J.A.; Gebhardt M.C. et al. Cytogenetic aberrations in osteosarcomas: nonrandom deletions, rings, and double-minute chromosomes. Cancer Genet Cytogenet 77: 81–88; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Gillette J.M.; Nielsen-Preiss S.M. The role of annexin 2 in osteoblastic mineralization. J. Cell Sci. 117: 441–449; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Jacks T.; Remington L. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4: 1–7; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Jensh R.P.; Brent R.L. Rapid schedules for KOH clearing and Alizarin red S staining of fetal rat bone. Stain. Technol. 41: 179–183; 1966.

    PubMed  CAS  Google Scholar 

  • Kim S.; Choi J. et al. Imaging findings of extrapulmonary metastases of osteosarcoma. Clin Imaging 284: 291–230; 2004.

    Article  PubMed  Google Scholar 

  • Kitchin F.D.; Ellsworth R.M. Pleiotropic effects of the gene for retinoblastoma. J. Med. Genet. 11: 244–246; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Lian J.; Stein G et al. Bone formation: osteoblast lineage cells, growth factors, matrix proteins, and the mineralization process. In: FavusM. (ed) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippincott Williams & Wilkins, Philadelphia, pp 14–29; 1999.

    Google Scholar 

  • Lim G., Karaskova J. et al. Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangement associated with gene amplification in the osteosarcoma cell line MG-63. Cancer Genet. Cytogenet. 153: 158–164; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lui F., Malaval L. et al. The mature osteoblast phenotype is characterized by extensive plasticity. Exp. Cell. Res. 232: 97–105; 1997.

    Article  Google Scholar 

  • Marina N.M., Pratt C.B. et al. Improved prognosis of children with osteosarcoma metastatic to the lung(s) at the time of diagnosis. Cancer 70: 2722–2727; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Masuda H., Miller C. et al. Rearrangement of the p53 gene in human osteogenic sarcomas.”. Proc. Natl. Acad. Sci. USA 84: 7716–7719; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Mertens F., Mandahl N. et al. Cytogenetic findings in 33 osteosarcomas. Int. J. Cancer 55: 44–50; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Meyers P.A., Heller G. et al. Chemotherapy for nonmetastatic osteogenic sarcoma: The Memorial Sloan–Kettering experience. J. Clin. Oncol. 10: 5–15; 1992.

    PubMed  CAS  Google Scholar 

  • Meyers P.A., Heller G. et al. Osteogenic sarcoma with clinically detectable metastasis at initial presentation. J. Clin. Oncol. 113: 449–453; 1993.

    PubMed  CAS  Google Scholar 

  • Mousses S., McAuley, L. et al. Molecular and immunohistochemical identification of p53 alterations in bone and soft tissue sarcomas. Mod. Pathol. 9: 1–6; 1996.

    PubMed  CAS  Google Scholar 

  • Nielsen-Preiss S.M., Quigley, J.P. Detection and characterization of low abundance cellular proteins that specifically increase upon loss of the metastatic phenotype. J. Cell Biochem. 51: 219–235; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen-Preiss S.M.; Quigley, J.P. et al. Co-inoculation of human and murine carcinoma cells induces reciprocal suppression of metastasis by both cell lines. Clin. Exp. Mets. 17: 489–496; 1999.

    Article  CAS  Google Scholar 

  • Ossowski L.; Reich, E. Loss of malignancy during serial passage of human carcinoma in culture and discordance between malignancy and transformation parameters. Cancer Res. 40: 2310–2315; 1980.

    PubMed  CAS  Google Scholar 

  • Rochet N.; Dobousset, J. et al. Establishment, characterization and partial cytokine expression profile of a new human osteosarcoma cell line (CAL 72). Int. J. Cancer 82: 282–285; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg A. and Bridge, J. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet. Cytogenet. 145: 1–30; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T.; Toguchida, J. et al. Allelotype analysis in osteosarcomas: frequent allele loss on 3q, 13q, 17p and 18q. Cancer Res. 52: 2419–2423; 1992.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Marileila Garcia (University of Colorado HSC) for her assistance with the karyotype analysis, Karen Helm (University of Colorado HSC) for her assistance with the flow cytometry, and Kate McInnerney and Dr. Jean Starkey (Montana State University) for their assistance and use of the equipment in the Genomics Core Facility. This work was supported in part by NIH R03 AR052898-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila M. Nielsen-Preiss.

Additional information

Editor: J. Denry Sato

The work presented in this manuscript was initiated by the three authors at the University of Colorado Health Sciences Center, Denver, CO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillette, J.M., Gibbs, C.P. & Nielsen-Preiss, S.M. Establishment and characterization of OS 99-1, a cell line derived from a highly aggressive primary human osteosarcoma. In Vitro Cell.Dev.Biol.-Animal 44, 87–95 (2008). https://doi.org/10.1007/s11626-007-9075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9075-8

Keywords

Navigation