Skip to main content
Log in

Postoperative Changes in Body Composition After Pancreaticoduodenectomy Using Multifrequency Bioelectrical Impedance Analysis

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Background

Nutritional status is one of the most important clinical determinants of outcome after surgery. The aim of this study was to compare changes in the body composition of patients undergoing pancreaticoduodenectomy (PD), distal gastrectomy (DG), or total gastrectomy (TG).

Methods

The parameters of body composition were measured using multifrequency bioelectrical impedance analysis with an inBody 720 (Biospace Inc. Tokyo. Japan) in 60 patients who had undergone PD (n = 18), DG (n = 30), or TG (n = 12). None of the patients had recurrence or were treated with chemotherapy. Changes between the preoperative data and results and those obtained 12 months after surgery were evaluated.

Results

Twelve months after surgery, the body weight change in the PD group was significantly lower than in the TG and DG groups (−1.2 ± 3.8 vs −7.4 ± 4.4 and −4.0 ± 3.2 kg, respectively; p < 0.01 vs TG, p < 0.05 vs DG). The body weight change correlated with the fat mass change in all groups.

Conclusions

The type and extent of surgery has a different effect on long-term body weight and body composition. Bioelectric impedance analysis can be used to assess body composition and may be useful for nutritional assessment in patients who have undergone these surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whipple AO, Parsons WB, Mullins CR. Treatment of Carcinoma of the Ampulla of Vater. Ann Surg. 1935;102:763–779.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Traverso LW, Longmire WP, Jr. Preservation of the pylorus in pancreaticoduodenectomy. Surg Gynecol Obstet. 1978;146:959–962.

    CAS  PubMed  Google Scholar 

  3. Hayashibe A, Kameyama M, Shinbo M, et al. The surgical procedure and clinical results of subtotal stomach preserving pancreaticoduodenectomy (SSPPD) in comparison with pylorus preserving pancreaticoduodenectomy (PPPD). J Surg Oncol. 2007;95:106–109.

    Article  PubMed  Google Scholar 

  4. van Roest MH, Gouw AS, Peeters PM, et al. Results of pancreaticoduodenectomy in patients with periampullary adenocarcinoma: perineural growth more important prognostic factor than tumor localization. Ann Surg. 2008;248:97–103.

    Article  PubMed  Google Scholar 

  5. Shukla PJ. The challenges of improving survival following pancreatoduodenectomy for pancreatic ductal adenocarcinoma. Ann Surg. 2011;254:385–386.

    Article  PubMed  Google Scholar 

  6. Farnell MB. Surgical management of intraductal papillary mucinous neoplasm (IPMN) of the pancreas. J Gastrointest Surg. 2008;12:414–416.

    Article  PubMed  Google Scholar 

  7. Anderson JE, Hemming AW, Chang DC, et al. Surgical management trends for cholangiocarcinoma in the USA 1998–2009. J Gastrointest Surg. 2012;16:2225–2232.

    Article  PubMed  Google Scholar 

  8. Gratian L, Pura J, Dinan M, et al. Impact of extent of surgery on survival in patients with small nonfunctional pancreatic neuroendocrine tumors in the United States. Ann Surg Oncol. 2014;21:3515–3521.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Suzuki S, Kaji S, Koike N, et al. Pancreaticoduodenectomy can be safely performed in the elderly. Surg Today. 2013;43:620–624.

    Article  PubMed  Google Scholar 

  10. Yeo CJ, Cameron JL, Lillemoe KD, et al. Pancreaticoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma, part 2: randomized controlled trial evaluating survival, morbidity, and mortality. Ann Surg. 2002;236:355–366.

    Article  PubMed Central  PubMed  Google Scholar 

  11. McPhee JT, Hill JS, Whalen GF, et al. Perioperative mortality for pancreatectomy: a national perspective. Ann Surg. 2007;246:246–253.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nourissat A, Vasson MP, Merrouche Y, et al. Relationship between nutritional status and quality of life in patients with cancer. Eur J Cancer. 2008;44:1238–1242.

    Article  CAS  PubMed  Google Scholar 

  13. Takiguchi S, Murakami K, Yanagimoto Y, et al. Clinical application of ghrelin in the field of surgery. Surg Today. 2014;45:801–807.

    Article  PubMed  Google Scholar 

  14. Demas GE, Drazen DL, Nelson RJ. Reductions in total body fat decrease humoral immunity. Proc Biol Sci. 2003;270:905–911.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Marinho LA, Rettori O, Vieira-Matos AN. Body weight loss as an indicator of breast cancer recurrence. Acta Oncol. 2001;40:832–837.

    Article  CAS  PubMed  Google Scholar 

  16. Tsugane S, Sasaki S, Tsubono Y. Under- and overweight impact on mortality among middle-aged Japanese men and women: a 10-y follow-up of JPHC study cohort I. Int J Obes Relat Metab Disord. 2002;26:529–537.

    Article  CAS  PubMed  Google Scholar 

  17. Yeo CJ, Sohn TA, Cameron JL, et al. Periampullary adenocarcinoma: analysis of 5-year survivors. Ann Surg. 1998;227:821–831.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hirata K, Sato T, Mukaiya M, et al. Results of 1001 pancreatic resections for invasive ductal adenocarcinoma of the pancreas. Arch Surg. 1997;132:771–776.

  19. Nakeeb A, Pitt HA, Sohn TA, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224:463–473.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Vincent A, Herman J, Schulick R, et al. Pancreatic cancer. Lancet. 2011;378:607–620.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Jung HW, Kim JW, Kim JY, et al. Effect of muscle mass on toxicity and survival in patients with colon cancer undergoing adjuvant chemotherapy. Support Care Cancer. 2015;23:687–694.

    Article  PubMed  Google Scholar 

  22. Huang JJ, Yeo CJ, Sohn TA, et al. Quality of life and outcomes after pancreaticoduodenectomy. Ann Surg. 2000;231:890–898.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Carey S, Storey D, Biankin AV, et al. Long term nutritional status and quality of life following major upper gastrointestinal surgery—a cross-sectional study. Clin Nutr. 2011;30:774–779.

    Article  PubMed  Google Scholar 

  24. Sanford DE, Sanford AM, Fields RC, et al. Severe nutritional risk predicts decreased long-term survival in geriatric patients undergoing pancreaticoduodenectomy for benign disease. J Am Coll Surg. 2014;219:1149–1156.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Newhook TE, LaPar DJ, Lindberg JM, et al. Morbidity and mortality of pancreaticoduodenectomy for benign and premalignant pancreatic neoplasms. J Gastrointest Surg. 2015;19:1072–1077.

    Article  PubMed  Google Scholar 

  26. Bergh C, Sjostedt S, Hellers G, et al. Meal size, satiety and cholecystokinin in gastrectomized humans. Physiol Behav. 2003;78:143–147.

    Article  CAS  PubMed  Google Scholar 

  27. Bae JM, Park JW, Yang HK, et al. Nutritional status of gastric cancer patients after total gastrectomy. World J Surg. 1998;22:254–260.

    Article  CAS  PubMed  Google Scholar 

  28. Jaffrin MY, Morel H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys. 2008;30:1257–1269.

    Article  PubMed  Google Scholar 

  29. Kim M, Kim H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur J Clin Nutr. 2013;67:395–400.

    Article  CAS  PubMed  Google Scholar 

  30. Demura S, Sato S. Prediction of visceral fat area in Japanese adults: proposal of prediction method applicable in a field setting. Eur J Clin Nutr. 2007;61:727–735.

    Article  CAS  PubMed  Google Scholar 

  31. Lee Y, Kwon O, Shin CS, et al. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin Nutr Res. 2015;4:32–40.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kaido T, Mori A, Ogura Y, et al. Pre- and perioperative factors affecting infection after living donor liver transplantation. Nutrition. 2012;28:1104–1108.

    Article  PubMed  Google Scholar 

  33. Ida S, Watanabe M, Karashima R, et al. Changes in body composition secondary to neoadjuvant chemotherapy for advanced esophageal cancer are related to the occurrence of postoperative complications after esophagectomy. Ann Surg Oncol. 2014;21:3675–3679.

    Article  PubMed  Google Scholar 

  34. Matsumoto I, Shinzeki M, Asari S, et al. A prospective randomized comparison between pylorus- and subtotal stomach-preserving pancreatoduodenectomy on postoperative delayed gastric emptying occurrence and long-term nutritional status. J Surg Oncol. 2014;109:690–696.

    Article  PubMed  Google Scholar 

  35. Nozaki I M, Kojima K, Yamada H, et al. Long-term outcome of Roux-en-Y and Billroth-1 reconstruction after laparoscopic distal gastrectomy. World J Surg. 2013; 37:558–564.

    Article  PubMed  Google Scholar 

  36. Cha K, Chertow GM, Gonzalez J, et al. Multifrequency bioelectrical impedance estimates the distribution of body water. J Appl Physiol (1985). 1995;79:1316–1319.

    CAS  Google Scholar 

  37. Lee SW, Song JH, Kim GA, et al. Assessment of total body water from anthropometry-based equations using bioelectrical impedance as reference in Korean adult control and haemodialysis subjects. Nephrol Dial Transplant. 2001;16:91–97.

    Article  CAS  PubMed  Google Scholar 

  38. Ling CH, de Craen AJ, Slagboom PE, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30:610–615.

    Article  PubMed  Google Scholar 

  39. Kyle UG, Genton L, Karsegard L, et al. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 2001;17:248–253.

  40. Park JW, Jang JY, Kim EJ, et al. Effects of pancreatectomy on nutritional state, pancreatic function and quality of life. Br J Surg. 2013;100:1064–1070.

    Article  CAS  PubMed  Google Scholar 

  41. Miholic J, Meyer HJ, Muller MJ, et al. Nutritional consequences of total gastrectomy: the relationship between mode of reconstruction, postprandial symptoms, and body composition. Surgery. 1990;108:488–494.

    CAS  PubMed  Google Scholar 

  42. Liedman B, Andersson H, Bosaeus I, et al. Changes in body composition after gastrectomy: results of a controlled, prospective clinical trial. World J Surg. 1997;21:416–420.

    Article  CAS  PubMed  Google Scholar 

  43. Kiyama T, Mizutani T, Okuda T, et al. Postoperative changes in body composition after gastrectomy. J Gastrointest Surg. 2005;9:313–319.

    Article  PubMed  Google Scholar 

  44. Yoon DY, Kim HK, Kim JA, et al. Changes in the abdominal fat distribution after gastrectomy: computed tomography assessment. ANZ J Surg. 2007;77:121–125.

    Article  PubMed  Google Scholar 

  45. Matsumoto J, Traverso LW. Exocrine function following the whipple operation as assessed by stool elastase. J Gastrointest Surg. 2006;10:1225–1229.

    Article  PubMed  Google Scholar 

  46. Nakamura H, Murakami Y, Uemura K, et al. Predictive factors for exocrine pancreatic insufficiency after pancreatoduodenectomy with pancreaticogastrostomy. J Gastrointest Surg. 2009;13:1321–1327.

    Article  PubMed  Google Scholar 

  47. Niedergethmann M, Shang E, Farag Soliman M, et al. Early and enduring nutritional and functional results of pylorus preservation vs classic Whipple procedure for pancreatic cancer. Langenbecks Arch Surg. 2006;391:195–202.

    Article  PubMed  Google Scholar 

  48. Gubergrits N, Malecka-Panas E, Lehman GA, et al. A 6-month, open-label clinical trial of pancrelipase delayed-release capsules (Creon) in patients with exocrine pancreatic insufficiency due to chronic pancreatitis or pancreatic surgery. Aliment Pharmacol Ther. 2011;33:1152–1161.

    Article  CAS  PubMed  Google Scholar 

  49. Ogawa H, Fujitani K, Tsujinaka T, et al. InBody 720 as a new method of evaluating visceral obesity. Hepatogastroenterology. 2011;58:42–44.

    PubMed  Google Scholar 

  50. Ida S, Watanabe M, Yoshida N, et al. Sarcopenia is a Predictor of Postoperative Respiratory Complications in Patients with Esophageal Cancer. Ann Surg Oncol. 2015.

  51. Kawai M, Tani M, Hirono S, et al. Pylorus ring resection reduces delayed gastric emptying in patients undergoing pancreatoduodenectomy: a prospective, randomized, controlled trial of pylorus-resecting versus pylorus-preserving pancreatoduodenectomy. Ann Surg. 2011;253:495–501.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Cancer Center Research and Development Fund (25-A-5 26-A-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Nakamori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikamori, M., Miyamoto, A., Asaoka, T. et al. Postoperative Changes in Body Composition After Pancreaticoduodenectomy Using Multifrequency Bioelectrical Impedance Analysis. J Gastrointest Surg 20, 611–618 (2016). https://doi.org/10.1007/s11605-015-3055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-015-3055-1

Keywords

Navigation