Skip to main content
Log in

New Paradigms in Post-hepatectomy Liver Failure

  • Review Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Introduction

Liver failure after hepatectomy remains the most feared postoperative complication. Many risk factors are already known, related to patient’s comorbidities, underlying liver disease, received treatments and type of resection. Preoperative assessment of functional liver reserve must be a priority for the surgeon.

Methods

Physiopathology of post-hepatectomy liver failure is not comparable to fulminant liver failure. Liver regeneration is an early phenomenon whose cellular mechanisms are beginning to be elucidated and allowing most of the time to quickly recover a functional organ. In some cases, microscopic and macroscopic disorganization appears. The hepatocyte hyperproliferation and the asynchronism between hepatocytes and non-hepatocyte cells mitosis probably play a major role in this pathogenesis.

Results

Many peri- or intra-operative techniques try to prevent the occurrence of this potentially lethal complication, but a better understanding of involved mechanisms might help to completely avoid it, or even to extend the possibilities of resection.

Conclusion

Future prevention and management may include pharmacological slowing of proliferation, drug or physical modulation of portal flow to reduce shear–stress, stem cells or immortalized hepatocytes injection, and liver bioreactors. Everything must be done to avoid the need for transplantation, which remains today the most efficient treatment of liver failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HGF:

Hepatocyte growth factor

ICG:

Indocyanine green

ICG 15′:

ICG clearance test (plasmatic retention at 15 min)

LSEC:

Liver sinusoidal endothelial cells

OLT:

Orthotopic liver transplantation

PHLF:

Post-hepatectomy liver failure

PHT:

Portal hypertension

PHx:

Partial hepatectomy

POD:

Postoperative day

PVE:

Portal vein embolization

RL:

Remnant liver

TGF:

Transforming growth factor

References

  1. Rahbari NN, Garden OJ, Padbury R, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149(5):713–724.

    Article  PubMed  Google Scholar 

  2. Balzan S, Belghiti J, Farges O, et al. The “50–50 criteria” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Ann Surg. 2005;242(6):824–8, discussion 828–9.

    Article  PubMed  Google Scholar 

  3. Mullen JT, Ribero D, Reddy SK, et al. Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. J Am Coll Surg. 2007;204(5):854–862.

    Article  PubMed  Google Scholar 

  4. Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell. Mol. Life Sci. 2005;62(19–20):2295–2304.

    Article  PubMed  CAS  Google Scholar 

  5. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–1377.

    Article  PubMed  CAS  Google Scholar 

  6. Sun H-C, Qin L-X, Wang L, et al. Risk factors for postoperative complications after liver resection. HBPD INT. 2005;4(3):370–374.

    PubMed  Google Scholar 

  7. Virani S, Michaelson JS, Hutter MM, et al. Morbidity and mortality after liver resection: results of the patient safety in surgery study. J Am Coll Surg. 2007;204(6):1284–1292.

    Article  PubMed  Google Scholar 

  8. House MG, Ito H, Gönen M, et al. Survival after hepatic resection for metastatic colorectal cancer: trends in outcomes for 1,600 patients during two decades at a single institution. J Am Coll Surg. 2010;210(5):744–52, 752–5.

    Article  PubMed  Google Scholar 

  9. Hammond JS, Guha IN, Beckingham IJ, Lobo DN. Prediction, prevention and management of postresection liver failure. Br J Surg. 2011;98(9):1188–1200.

    Article  PubMed  CAS  Google Scholar 

  10. Little SA, Jarnagin WR, DeMatteo RP, Blumgart LH, Fong Y. Diabetes is associated with increased perioperative mortality but equivalent long-term outcome after hepatic resection for colorectal cancer. J Gastrointest Surg. 2002;6(1):88–94.

    Article  PubMed  Google Scholar 

  11. Bucher NL. Insulin, glucagon, and the liver. Adv. Enzyme Regul. 1976;15:221–230.

    Article  PubMed  CAS  Google Scholar 

  12. Cucchetti A, Cescon M, Ercolani G, Di Gioia P, Peri E, Pinna AD. Safety of hepatic resection in overweight and obese patients with cirrhosis. Br J Surg. 2011;98(8):1147–1154.

    Article  PubMed  CAS  Google Scholar 

  13. Santibañes E, Alvarez FA, Ardiles V. How to avoid postoperative liver failure: a novel method. World J Surg. 2011;36(1):125–128.

    Article  Google Scholar 

  14. Breitenstein S, Apestegui C, Petrowsky H, Clavien P-A. “State of the art” in liver resection and living donor liver transplantation: a worldwide survey of 100 liver centers. World J Surg. 2009;33(4):797–803.

    Article  PubMed  Google Scholar 

  15. Kishi Y, Abdalla EK, Chun YS, et al. Three hundred and one consecutive extended right hepatectomies. Transactions of the Meeting of the American Surgical Association. 2009;127:171–179.

    Article  Google Scholar 

  16. Truant S, Oberlin O, Sergent G, et al. Remnant liver volume to body weight ratio ≥0.5%: a new cut-off to estimate postoperative risks after extended resection in noncirrhotic liver. J Am Coll Surg. 2007;204(1):22–33.

    Article  PubMed  Google Scholar 

  17. Li C, Mi K, Wen T-F, Yan L-N, Li B. Safety of patients with a graft to body weight ratio less than 0.8% in living donor liver transplantation using right hepatic lobe without middle hepatic vein. Hepatogastroenterology. 2012;59(114):469–472.

    Article  PubMed  Google Scholar 

  18. Hemming AW, Scudamore CH, Shackleton CR, Pudek M, Erb SR. Indocyanine green clearance as a predictor of successful hepatic resection in cirrhotic patients. Am J Surg. 1992;163(5):515–518.

    Article  PubMed  CAS  Google Scholar 

  19. Yamanaka N, Okamoto E, Kawamura E, et al. Dynamics of normal and injured human liver regeneration after hepatectomy as assessed on the basis of computed tomography and liver function. Hepatology. 1993;18(1):79–85.

    Article  PubMed  CAS  Google Scholar 

  20. Cucchetti A, Ercolani G, Vivarelli M, et al. Is portal hypertension a contraindication to hepatic resection? Ann Surg. 2009;250(6):922–928.

    Article  PubMed  Google Scholar 

  21. Capussotti L, Ferrero A, Viganò L, Muratore A, Polastri R, Bouzari H. Portal Hypertension: contraindication to liver surgery? World J Surg. 2006;30(6):992–999.

    Article  PubMed  Google Scholar 

  22. Cucchetti A, Ercolani G, Vivarelli M, et al. Impact of model for end-stage liver disease (MELD) score on prognosis after hepatectomy for hepatocellular carcinoma on cirrhosis. Liver Transpl. 2006;12(6):966–971.

    Article  PubMed  Google Scholar 

  23. Scheingraber S, Richter S, Igna D, Flesch S, Kopp B, Schilling MK. Indocyanine green disappearance rate is the most useful marker for liver resection. Hepatogastroenterology. 2008;55(85):1394–1399.

    PubMed  CAS  Google Scholar 

  24. Makuuchi M, Kokudo N, Arii S, et al. Development of evidence-based clinical guidelines for the diagnosis and treatment of hepatocellular carcinoma in Japan. Hepatol Res. 2008;38(1):37–51.

    Article  PubMed  Google Scholar 

  25. Stockmann M, Lock JF, Riecke B, et al. Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann Surg. 2009;250(1):119–125.

    Article  PubMed  Google Scholar 

  26. Bruix J, Castells A, Bosch J, et al. Surgical resection of hepatocellular carcinoma in cirrhotic patients: prognostic value of preoperative portal pressure. Gastroenterology. 1996;111(4):1018–1022.

    Article  PubMed  CAS  Google Scholar 

  27. Lim C, Farges O. Portal vein occlusion before major hepatectomy in patients with colorectal liver metastases: rationale, indications, technical aspects, complications and outcome. J Visc Surg. 2012.

  28. Farges O, Belghiti J, Kianmanesh R, et al. Portal vein embolization before right hepatectomy: prospective clinical trial. Ann Surg. 2003;237(2):208–217.

    PubMed  Google Scholar 

  29. Makuuchi M, Kosuge T, Takayama T, et al. Surgery for small liver cancers. Semin Surg Oncol. 1993;9(4):298–304.

    Article  PubMed  CAS  Google Scholar 

  30. Seyama Y, Kokudo N. Assessment of liver function for safe hepatic resection. Hepatology Research. 2009;39(2):107–116.

    Article  PubMed  Google Scholar 

  31. Das BC, Isaji S, Kawarada Y. Analysis of 100 consecutive hepatectomies: risk factors in patients with liver cirrhosis or obstructive jaundice. World J Surg. 2001;25(3):266–273.

    Article  PubMed  CAS  Google Scholar 

  32. Makino H, Shimizu H, Ito H, et al. Changes in growth factor and cytokine expression in biliary obstructed rat liver and their relationship with delayed liver regeneration after partial hepatectomy. World J Gastroenterol. 2006;12(13):2053–2059.

    PubMed  CAS  Google Scholar 

  33. Nakano K, Chijiiwa K, Tanaka M. Lower activity of CCAAT/enhancer-binding protein and expression of cyclin E, but not cyclin D1, activating protein-1 and p21(WAF1), after partial hepatectomy in obstructive jaundice. Biochemical and Biophysical Research Communications. 2001;280(3):640–645.

    Article  PubMed  CAS  Google Scholar 

  34. Sano T, Ajiki T, Takeyama Y, Kuroda Y. Internal biliary drainage improves decreased number of gut mucosal T lymphocytes and MAdCAM-1 expression in jaundiced rats. Surgery. 2004;136(3):693–699.

    Article  PubMed  Google Scholar 

  35. Kamiya S, Nagino M, Kanazawa H, et al. The value of bile replacement during external biliary drainage: an analysis of intestinal permeability, integrity, and microflora. Ann Surg. 2004;239(4):510–517.

    Article  PubMed  Google Scholar 

  36. Iyomasa S, Terasaki M, Kuriki H, et al. Decrease in regeneration capacity of rat liver after external biliary drainage. Eur Surg Res. 1992;24(5):265–272.

    Article  PubMed  CAS  Google Scholar 

  37. Seifalian AM, Piasecki C, Agarwal A, Davidson BR. The effect of graded steatosis on flow in the hepatic parenchymal microcirculation. Transplantation. 1999;68(6):780–784.

    Article  PubMed  CAS  Google Scholar 

  38. Serafín A, Roselló-Catafau J, Prats N, Xaus C, Gelpí E, Peralta C. Ischemic preconditioning increases the tolerance of Fatty liver to hepatic ischemia–reperfusion injury in the rat. Am J Pathol. 2002;161(2):587–601.

    Article  PubMed  Google Scholar 

  39. Rubbia-Brandt L, Mentha G, Terris B. Sinusoidal obstruction syndrome is a major feature of hepatic lesions associated with oxaliplatin neoadjuvant chemotherapy for liver colorectal metastases. J Am Coll Surg. 2006;202(1):199–200.

    Article  PubMed  Google Scholar 

  40. Fong Y, Bentrem DJ. CASH (Chemotherapy-Associated Steatohepatitis) costs. Ann Surg. 2006;243(1):8–9.

    Article  PubMed  Google Scholar 

  41. Rubbia-Brandt L. Hepatic lesions induced by systemic chemotherapy for digestive cancer. Ann Pathol. 2010;30(6):421–425.

    Article  PubMed  Google Scholar 

  42. Soubrane O, Brouquet A, Zalinski S, et al. Predicting high grade lesions of sinusoidal obstruction syndrome related to oxaliplatin-based chemotherapy for colorectal liver metastases: correlation with post-hepatectomy outcome. Ann Surg. 2010;251(3):454–460.

    Article  PubMed  Google Scholar 

  43. Overman MJ, Maru DM, Charnsangavej C, et al. Oxaliplatin-mediated increase in spleen size as a biomarker for the development of hepatic sinusoidal injury. J Clin Oncol. 2010;28(15):2549–2555.

    Article  PubMed  CAS  Google Scholar 

  44. Aloia T, Sebagh M, Plasse M, et al. Liver histology and surgical outcomes after preoperative chemotherapy with fluorouracil plus oxaliplatin in colorectal cancer liver metastases. J Clin Oncol. 2006;24(31):4983–4990.

    Article  PubMed  CAS  Google Scholar 

  45. Karoui M, Penna C, Amin-Hashem M, et al. influence of preoperative chemotherapy on the risk of major hepatectomy for colorectal liver metastases. Ann Surg. 2006;243(1):1–7.

    Article  PubMed  Google Scholar 

  46. Soriano PA, Liu N, Castillo E, et al. Oxaliplatin but not irinotecan impairs posthepatectomy liver regeneration in a murine model. International Journal of Hepatology. 2011;2011:1–6.

    Article  CAS  Google Scholar 

  47. Schiffer E, Frossard J-L, Rubbia-Brandt L, Mentha G, Pastor CM. Hepatic regeneration is decreased in a rat model of sinusoidal obstruction syndrome. J Surg Oncol. 2009;99(7):439–446.

    Article  PubMed  Google Scholar 

  48. Nafidi O, Désy D, Létourneau R, et al. Hypertrophy of the non-embolized liver after chemotherapy. HPB (Oxford). 2009;11(2):103–107.

    Article  Google Scholar 

  49. Vauthey JN. chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. Journal of Clinical Oncology. 2006;24(13):2065–2072.

    Article  PubMed  CAS  Google Scholar 

  50. Hora C, Romanque P, Dufour J-FF. Effect of sorafenib on murine liver regeneration. Hepatology. 2011;53(2):577–586.

    Article  PubMed  CAS  Google Scholar 

  51. Van Cutsem E, Köhne C-H, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–1417.

    Article  PubMed  Google Scholar 

  52. Zorzi D, Chun YS, Madoff DC, Abdalla EK, Vauthey J-N. Chemotherapy with bevacizumab does not affect liver regeneration after portal vein embolization in the treatment of colorectal liver metastases. Ann Surg Oncol. 2008;15(10):2765–2772.

    Article  PubMed  Google Scholar 

  53. Klinger M, Eipeldauer S, Hacker S, et al. Bevacizumab protects against sinusoidal obstruction syndrome and does not increase response rate in neoadjuvant XELOX/FOLFOX therapy of colorectal cancer liver metastases. Eur J Surg Oncol. 2009;35(5):515–520.

    Article  PubMed  CAS  Google Scholar 

  54. Rice GC, Leiberman DP, Mathie RT, Ryan CJ, Harper AM, Blumgart LH. Liver tissue blood flow measured by 85Kr clearance in the anaesthetized rat before and after partial hepatectomy. Br J Exp Pathol. 1977;58(3):243–250.

    PubMed  CAS  Google Scholar 

  55. Schoen JM, Wang HH, Minuk GY, Lautt WW. Shear stress-induced nitric oxide release triggers the liver regeneration cascade. Nitric Oxide. 2001;5(5):453–464.

    Article  PubMed  CAS  Google Scholar 

  56. Cantré D, Schuett H, Hildebrandt A, et al. Nitric oxide reduces organ injury and enhances regeneration of reduced-size livers by increasing hepatic arterial flow. Br J Surg. 2008;95(6):785–792.

    Article  PubMed  CAS  Google Scholar 

  57. Fausto N. Involvement of the innate immune system in liver regeneration and injury. J Hepatol. 2006;45(3):347–349.

    Article  PubMed  CAS  Google Scholar 

  58. Mortensen KE, Conley LN, Nygaard I, et al. Increased sinusoidal flow is not the primary stimulus to liver regeneration. Comp Hepatol. 2010;9:2.

    Article  PubMed  CAS  Google Scholar 

  59. Di Domenico S, Santori G, Traverso N, et al. Early effects of portal flow modulation after extended liver resection in rat. Dig Liver Dis. 2011;43(10):814–822.

    Article  PubMed  Google Scholar 

  60. Michalopoulos GK. Liver regeneration. J. Cell. Physiol. 2007;213(2):286–300.

    Article  PubMed  CAS  Google Scholar 

  61. Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, Orloff MS. TLR-dependent cross talk between human Kupffer cells and NK cells. J. Exp. Med. 2008;205(1):233–244.

    Article  PubMed  CAS  Google Scholar 

  62. Jin X, Zimmers TA, Perez EA, Pierce RH, Zhang Z, Koniaris LG. Paradoxical effects of short- and long-term interleukin-6 exposure on liver injury and repair. Hepatology. 2006;43(3):474–484.

    Article  PubMed  CAS  Google Scholar 

  63. Ryan CJ, Guest J, Harper AM, Blumgart LH. Liver blood flow measurements in the portacavally transposed rat before and after partial hepatectomy. Br J Exp Pathol. 1978;59(2):111–115.

    PubMed  CAS  Google Scholar 

  64. Ding B-S, Nolan DJ, Butler JM, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 2010;468(7321):310–315.

    Article  PubMed  CAS  Google Scholar 

  65. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294(5542):559–563.

    Article  PubMed  CAS  Google Scholar 

  66. LeCouter J, Moritz DR, Li B, et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science. 2003;299(5608):890–893.

    Article  PubMed  CAS  Google Scholar 

  67. Hoehme S, Brulport M, Bauer A, et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proceedings of the National Academy of Sciences. 2010;107(23):10371–10376.

    Article  CAS  Google Scholar 

  68. Myronovych A, Murata S, Chiba M, et al. Role of platelets on liver regeneration after 90% hepatectomy in mice. J Hepatol. 2008;49(3):363–372.

    Article  PubMed  CAS  Google Scholar 

  69. Lesurtel M, Graf R, Aleil B, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312(5770):104–107.

    Article  PubMed  CAS  Google Scholar 

  70. Kawasaki T, Murata S, Takahashi K, et al. Activation of human liver sinusoidal endothelial cell by human platelets induces hepatocyte proliferation. J Hepatol. 2010;53(4):648–654.

    Article  PubMed  CAS  Google Scholar 

  71. Tian Y, Graf R, El-Badry AM, et al. Activation of serotonin receptor-2B rescues small-for-size liver graft failure in mice. Hepatology. 2011;53(1):253–262.

    Article  PubMed  CAS  Google Scholar 

  72. Taub R. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell Biol. 2004;5(10):836–847.

    Article  PubMed  CAS  Google Scholar 

  73. Sakamoto T, Liu Z, Murase N, et al. Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. Hepatology. 1999;29(2):403–411.

    Article  PubMed  CAS  Google Scholar 

  74. Wack K. Sinusoidal ultrastructure evaluated during the revascularization of regenerating rat liver. Hepatology. 2001;33(2):363–378.

    Article  PubMed  CAS  Google Scholar 

  75. Mars WM, Kim TH, Stolz DB, Liu ML, Michalopoulos GK. Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor. Cancer Res. 1996;56(12):2837–2843.

    PubMed  CAS  Google Scholar 

  76. Nagasue N, Yukaya H, Ogawa Y, Kohno H, Nakamura T. Human liver regeneration after major hepatic resection. A study of normal liver and livers with chronic hepatitis and cirrhosis. Ann Surg. 1987;206(1):30–39.

    Article  PubMed  CAS  Google Scholar 

  77. Kahn D, van Hoorn-Hickman R, Terblanche J. Liver blood flow after partial hepatectomy in the pig. J Surg Res. 1984;37(4):290–294.

    Article  PubMed  CAS  Google Scholar 

  78. Yamazaki O, Sakai K, Kinoshita H, et al. Measurement of the portal blood flow in man by continuous local thermodilution method: II. Portal hemodynamics before and after hepatectomy. Nihon Geka Gakkai Zasshi. 1986;87(7):743–753.

    PubMed  CAS  Google Scholar 

  79. Lin PW. Hemodynamic changes after hepatectomy in rats studied with radioactive microspheres. J. Formos. Med. Assoc. 1990;89(3):177–181.

    PubMed  CAS  Google Scholar 

  80. Eipel C, Abshagen K, Ritter J, Cantré D, Menger MD, Vollmar B. Splenectomy improves survival by increasing arterial blood supply in a rat model of reduced-size liver. Transpl Int. 2010;23(10):998–1007.

    Article  PubMed  Google Scholar 

  81. Simon-Santamaria J, Malovic I, Warren A, et al. Age-related changes in scavenger receptor-mediated endocytosis in rat liver sinusoidal endothelial cells. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2010;65A(9):951–960.

    Article  CAS  Google Scholar 

  82. Le Couteur DG, Warren A, Cogger VC, et al. Old age and the hepatic sinusoid. Anat Rec. 2008;291(6):672–683.

    Article  Google Scholar 

  83. Panis Y, McMullan DM, Emond JC. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery. 1997;121(2):142–149.

    Article  PubMed  CAS  Google Scholar 

  84. Ninomiya M, Shirabe K, Terashi T, et al. Deceleration of regenerative response improves the outcome of rat with massive hepatectomy. Am J Transplant. 2010;10(7):1580–1587.

    Article  PubMed  CAS  Google Scholar 

  85. Cai SR, Motoyama K, Shen KJ, Kennedy SC, Flye MW, Ponder KP. Lovastatin decreases mortality and improves liver functions in fulminant hepatic failure from 90% partial hepatectomy in rats. J Hepatol. 2000;32(1):67–77.

    Article  PubMed  CAS  Google Scholar 

  86. Xue F, Takahara T, Yata Y, et al. Hepatocyte growth factor gene therapy accelerates regeneration in cirrhotic mouse livers after hepatectomy. Gut. 2003;52(5):694–700.

    Article  PubMed  CAS  Google Scholar 

  87. Sakata H, Takayama H, Sharp R, Rubin JS, Merlino G, LaRochelle WJ. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ. 1996;7(11):1513–1523.

    PubMed  CAS  Google Scholar 

  88. Petrowsky H, Breitenstein S, Slankamenac K, et al. Effects of pentoxifylline on liver regeneration. Ann Surg. 2010;252(5):813–822.

    Article  PubMed  Google Scholar 

  89. Belghiti J, Liddo G, Raut V, et al. “Inherent limitations” in donors: control matched study of consequences following a right hepatectomy for living donation and benign liver lesions. Ann Surg. 2012;255(3):528–533.

    Article  PubMed  Google Scholar 

  90. Yigitler C, Farges O, Kianmanesh R, Regimbeau J-M, Abdalla EK, Belghiti J. The small remnant liver after major liver resection: how common and how relevant? Liver Transpl. 2003;9(9):S18–25.

    Article  PubMed  Google Scholar 

  91. Hemming AW, Reed AI, Howard RJ, et al. Preoperative portal vein embolization for extended hepatectomy. Ann Surg. 2003;237(5):686–91; discussion 691–3.

    PubMed  Google Scholar 

  92. Capussotti L, Muratore A, Baracchi F, et al. Portal vein ligation as an efficient method of increasing the future liver remnant volume in the surgical treatment of colorectal metastases. Arch Surg. 2008;143(10):978–82; discussion 982.

    Article  PubMed  Google Scholar 

  93. Ribero D, Abdalla EK, Madoff DC, Donadon M, Loyer EM, Vauthey JN. Portal vein embolization before major hepatectomy and its effects on regeneration, resectability and outcome. Br J Surg. 2007;94(11):1386–1394.

    Article  PubMed  CAS  Google Scholar 

  94. de Graaf W, van Lienden KP, van den Esschert JW, Bennink RJ, van Gulik TM. Increase in future remnant liver function after preoperative portal vein embolization. Br J Surg. 2011;98(6):825–834.

    Article  PubMed  Google Scholar 

  95. de Graaf W, van den Esschert JW, van Lienden KP, van Gulik TM. Induction of tumor growth after preoperative portal vein embolization: is it a real problem? Ann Surg Oncol. 2009;16(2):423–430.

    Article  PubMed  Google Scholar 

  96. Yoo H, Kim JH, Ko G-Y, et al. sequential transcatheter arterial chemoembolization and portal vein embolization versus portal vein embolization only before major hepatectomy for patients with hepatocellular carcinoma. Ann Surg Oncol. 2010;18(5):1251–1257.

    Article  PubMed  Google Scholar 

  97. Ogata S, Belghiti J, Farges O, Varma D, Sibert A, Vilgrain V. Sequential arterial and portal vein embolizations before right hepatectomy in patients with cirrhosis and hepatocellular carcinoma. Br J Surg. 2006;93(9):1091–1098.

    Article  PubMed  CAS  Google Scholar 

  98. Hwang S, Lee S-G, Ko G-Y, et al. Sequential preoperative ipsilateral hepatic vein embolization after portal vein embolization to induce further liver regeneration in patients with hepatobiliary malignancy. Ann Surg. 2009;249(4):608–616.

    Article  PubMed  Google Scholar 

  99. Gruttadauria S, Gridelli B. Sequential preoperative ipsilateral portal and arterial embolization in patients with liver tumors: is it really the best approach? World J Surg. 2007;31(12):2427–2428.

    Article  PubMed  Google Scholar 

  100. Adam R, Laurent A, Azoulay D, Castaing D, Bismuth H. Two-stage hepatectomy: a planned strategy to treat irresectable liver tumors. Ann Surg. 2000;232(6):777–785.

    Article  PubMed  CAS  Google Scholar 

  101. Kokudo N, Tada K, Seki M, et al. Proliferative activity of intrahepatic colorectal metastases after preoperative hemihepatic portal vein embolization. Hepatology. 2001;34(2):267–272.

    Article  PubMed  CAS  Google Scholar 

  102. Heinrich S, Jochum W, Graf R, Clavien P-A. Portal vein ligation and partial hepatectomy differentially influence growth of intrahepatic metastasis and liver regeneration in mice. J Hepatol. 2006;45(1):35–42.

    Article  PubMed  Google Scholar 

  103. Torzilli G, Procopio F, Donadon M, Del Fabbro D, Cimino M, Montorsi M. Safety of intermittent Pringle maneuver cumulative time exceeding 120 minutes in liver resection: a further step in favor of the “radical but conservative” policy. Ann Surg. 2012;255(2):270–280.

    Article  PubMed  Google Scholar 

  104. Schnitzbauer AA, Lang SA, Goessmann H, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg. 2012;255(3):405–414.

    Article  PubMed  Google Scholar 

  105. Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien–Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250(2):187–196.

    Article  PubMed  Google Scholar 

  106. Mise Y, Hasegawa K, Satou S, et al. Venous reconstruction based on virtual liver resection to avoid congestion in the liver remnant. Br J Surg. 2011;98(12):1742–1751.

    Article  PubMed  CAS  Google Scholar 

  107. Ogata S, Kianmanesh R, Belghiti J. Doppler assessment after right hepatectomy confirms the need to fix the remnant left liver in the anatomical position. Br J Surg. 2005;92(5):592–595.

    Article  PubMed  CAS  Google Scholar 

  108. Sano K, Makuuchi M, Miki K, et al. Evaluation of hepatic venous congestion: proposed indication criteria for hepatic vein reconstruction. Ann Surg. 2002;236(2):241–247.

    Article  PubMed  Google Scholar 

  109. Scatton O, Plasse M, Dondero F, Vilgrain V, Sauvanet A, Belghiti J. Impact of localized congestion related to venous deprivation after hepatectomy. Surgery. 2008;143(4):483–489.

    Article  PubMed  Google Scholar 

  110. Akamatsu N, Sugawara Y, Kaneko J, et al. Effects of middle hepatic vein reconstruction on right liver graft regeneration. Transplantation. 2003;76(5):832–837.

    Article  PubMed  Google Scholar 

  111. Hoti E, Salloum C, Azoulay D. Hepatic resection with in situ hypothermic perfusion is superior to other resection techniques. Dig Surg. 2011;28(2):94–99.

    Article  PubMed  Google Scholar 

  112. Azoulay D, Eshkenazy R, Andreani P, et al. In situ hypothermic perfusion of the liver versus standard total vascular exclusion for complex liver resection. Ann Surg. 2005;241(2):277–285.

    Article  PubMed  Google Scholar 

  113. Yoshizumi T, Taketomi A, Soejima Y, et al. The beneficial role of simultaneous splenectomy in living donor liver transplantation in patients with small-for-size graft. Transpl Int. 2008;21(9):833–842.

    Article  PubMed  Google Scholar 

  114. Troisi R, Cammu G, Militerno G, et al. Modulation of portal graft inflow: a necessity in adult living-donor liver transplantation? Ann Surg. 2003;237(3):429–436.

    PubMed  Google Scholar 

  115. Tucker ON, Heaton N. The “small for size” liver syndrome. Curr Opin Crit Care. 2005;11(2):150–155.

    Article  PubMed  CAS  Google Scholar 

  116. Sugawara Y, Yamamoto J, Shimada K, et al. Splenectomy in patients with hepatocellular carcinoma and hypersplenism. J Am Coll Surg. 2000;190(4):446–450.

    Article  PubMed  CAS  Google Scholar 

  117. Arakawa Y, Shimada M, Uchiyama H, et al. Beneficial effects of splenectomy on massive hepatectomy model in rats. Hepatol Res. 2009;39(4):391–397.

    Article  PubMed  Google Scholar 

  118. Ito K, Ozasa H, Horikawa S. Effects of prior splenectomy on remnant liver after partial hepatectomy with Pringle maneuver in rats. Liver Int. 2005;25(2):438–444.

    Article  PubMed  Google Scholar 

  119. Ito K, Ozasa H, Yoneya R, Horikawa S. Splenectomy ameliorates hepatic ischemia and reperfusion injury mediated by heme oxygenase-1 induction in the rat. Liver. 2002;22(6):467–473.

    Article  PubMed  CAS  Google Scholar 

  120. Ren Y-S, Qian N-S, Tang Y, et al. Beneficial effects of splenectomy on liver regeneration in a rat model of massive hepatectomy. HBPD Int. 2012;11(1):60–65.

    PubMed  Google Scholar 

  121. Sato Y, Kobayashi T, Nakatsuka H, et al. Splenic arterial ligation prevents liver injury after a major hepatectomy by a reduction of surplus portal hypertension in hepatocellular carcinoma patients with cirrhosis. Hepatogastroenterology. 2001;48(39):831–835.

    PubMed  CAS  Google Scholar 

  122. Mogl MT, Nüssler NC, Presser SJ, et al. Evolving experience with prevention and treatment of splenic artery syndrome after orthotopic liver transplantation. Transpl Int. 2010;23(8):831–841.

    Article  PubMed  Google Scholar 

  123. Wang H, Ohkohchi N, Enomoto Y, et al. Effect of portocaval shunt on residual extreme small liver after extended hepatectomy in porcine. World J Surg. 2006;30(11):2014–2022.

    Article  PubMed  Google Scholar 

  124. Iida T, Yagi S, Taniguchi K, Hori T, Uemoto S. Improvement of morphological changes after 70% hepatectomy with portocaval shunt: preclinical study in porcine model. Journal of Surgical Research. 2007;143(2):238–246.

    Article  PubMed  Google Scholar 

  125. Xu X, Man K, Zheng SS, et al. Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transpl. 2006;12(4):621–627.

    Article  PubMed  Google Scholar 

  126. van de Kerkhove M-P, de Jong KP, Rijken AM, de Pont A-CJM, van Gulik TM. MARS treatment in posthepatectomy liver failure. Liver Int. 2003;23 Suppl 3:44–51.

    Article  PubMed  Google Scholar 

  127. Rittler P, Ketscher C, Inthorn D, Jauch K-W, Hartl WH. Use of the molecular adsorbent recycling system in the treatment of postoperative hepatic failure and septic multiple organ dysfunction—preliminary results. Liver Int. 2004;24(2):136–141.

    Article  PubMed  Google Scholar 

  128. Consensus conference: Indications for Liver Transplantation, January 19 and 20, 2005, Lyon-Palais Des Congrès: text of recommendations (long version). Vol 12. 2006:998–1011.

  129. Uskudar O, Raja K, Schiano TD, Fiel MI, del Rio Martin J, Chang C. Liver Transplantation is possible in some patients with liver metastasis of colon cancer. Transplant Proc. 2011;43(5):2070–2074.

    Article  PubMed  CAS  Google Scholar 

  130. Minato M, Houssin D, Demma I, et al. Transplantation of hepatocytes for treatment of surgically induced acute hepatic failure in the rat. Eur Surg Res. 1984;16(3):162–169.

    Article  PubMed  CAS  Google Scholar 

  131. Kobayashi N. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science. 2000;287(5456):1258–1262.

    Article  PubMed  CAS  Google Scholar 

  132. Chen Y, Li J, Liu X, Zhao W, Wang Y, Wang X. Transplantation of immortalized human fetal hepatocytes prevents acute liver failure in 90% hepatectomized mice. Transplant Proc. 2010;42(5):1907–1914.

    Article  PubMed  CAS  Google Scholar 

  133. Arkadopoulos N, Kostopanagiotou G, Nastos C, et al. Reversal of experimental posthepatectomy liver failure in pigs: a new application of hepatocyte bioreactors. Artif Organs. 2011;35(1):29–36.

    Article  PubMed  Google Scholar 

  134. Furst G, Schulte am Esch J, Poll LW, et al. Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experience. Radiology. 2007;243(1):171–179.

    Article  PubMed  Google Scholar 

  135. Esch JSA, Schmelzle M, Fürst G, et al. Infusion of CD133+ bone marrow-derived stem cells after selective portal vein embolization enhances functional hepatic reserves after extended right hepatectomy. Ann Surg. 2012;255(1):79–85.

    Article  Google Scholar 

  136. Yamanaka K, Hatano E, Narita M, et al. Olprinone attenuates excessive shear stress through up-regulation of endothelial nitric oxide synthase in a rat excessive hepatectomy model. Liver Transpl. 2011;17(1):60–69.

    Article  PubMed  Google Scholar 

  137. Figueras J, Valls C, Rafecas A, Fabregat J, Ramos E, Jaurrieta E. Resection rate and effect of postoperative chemotherapy on survival after surgery for colorectal liver metastases. Br J Surg. 2001;88(7):980–985.

    Article  PubMed  CAS  Google Scholar 

  138. Finch RJB, Malik HZ, Hamady ZZR, et al. Effect of type of resection on outcome of hepatic resection for colorectal metastases. Br J Surg. 2007;94(10):1242–1248.

    Article  PubMed  CAS  Google Scholar 

  139. Tamandl D, Gruenberger B, Herberger B, et al. Selective resection of colorectal liver metastases. European Journal of Surgical Oncology (EJSO). 2007;33(2):174–182.

    Article  CAS  Google Scholar 

  140. Gold JS, Are C, Kornprat P, et al. Increased use of parenchymal-sparing surgery for bilateral liver metastases from colorectal cancer is associated with improved mortality without change in oncologic outcome. Ann Surg. 2008;247(1):109–117.

    Article  PubMed  Google Scholar 

  141. Karanjia ND, Lordan JT, Quiney N, Fawcett WJ, Worthington TR, Remington J. A comparison of right and extended right hepatectomy with all other hepatic resections for colorectal liver metastases: a ten-year study. European Journal of Surgical Oncology. 2009;35(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  142. Kesmodel SB, Ellis LM, Lin E, et al. Preoperative bevacizumab does not significantly increase postoperative complication rates in patients undergoing hepatic surgery for colorectal cancer liver metastases. J Clin Oncol. 2008;26(32):5254–5260.

    Article  PubMed  Google Scholar 

  143. Mehta NN, Ravikumar R, Coldham CA, et al. Effect of preoperative chemotherapy on liver resection for colorectal liver metastases. European Journal of Surgical Oncology (EJSO). 2008;34(7):782–786.

    Article  CAS  Google Scholar 

  144. Schiesser M, Chen JWC, Maddern GJ, Padbury RTA. Perioperative morbidity affects long-term survival in patients following liver resection for colorectal metastases. J Gastrointest Surg. 2008;12(6):1054–1060.

    Article  PubMed  CAS  Google Scholar 

  145. Welsh FKS, Tekkis PP, O'Rourke T, John TG, Rees M. Quantification of risk of a positive (R1) resection margin following hepatic resection for metastatic colorectal cancer: an aid to clinical decision-making. Surg Oncol. 2008;17(1):3–13.

    Article  PubMed  Google Scholar 

  146. Konopke R, Kersting S, Bunk A, et al. Colorectal liver metastasis surgery: analysis of risk factors predicting postoperative complications in relation to the extent of resection. Int J Colorectal Dis. 2009;24(6):687–697.

    Article  PubMed  Google Scholar 

  147. Fong Y, Sun RL, Jarnagin W, Blumgart LH. An analysis of 412 cases of hepatocellular carcinoma at a Western center. Ann Surg. 1999;229(6):790–9; discussion 799–800.

    Article  PubMed  CAS  Google Scholar 

  148. Midorikawa Y, Kubota K, Takayama T, et al. A comparative study of postoperative complications after hepatectomy in patients with and without chronic liver disease. Surgery. 1999;126(3):484–491.

    Article  PubMed  CAS  Google Scholar 

  149. Poon RT-P, Fan S-T, Lo CM, et al. Extended hepatic resection for hepatocellular carcinoma in patients with cirrhosis: is it justified? Ann Surg. 2002;236(5):602–611.

    Article  PubMed  Google Scholar 

  150. Hsu K-Y, Chau G-Y, Lui W-Y, Tsay S-H, King K-L, Wu C-W. Predicting morbidity and mortality after hepatic resection in patients with hepatocellular carcinoma: the role of Model for End-Stage Liver Disease score. World J Surg. 2009;33(11):2412–2419.

    Article  PubMed  Google Scholar 

  151. Choi GH, Park JY, Hwang HK, et al. Predictive factors for long-term survival in patients with clinically significant portal hypertension following resection of hepatocellular carcinoma. Liver Int. 2011;31(4):485–493.

    Article  PubMed  CAS  Google Scholar 

  152. Ruzzenente A. Hepatocellular carcinoma in cirrhotic patients with portal hypertension: is liver resection always contraindicated? World J Gastroenterol. 2011;17(46):5083.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Vibert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golse, N., Bucur, P.O., Adam, R. et al. New Paradigms in Post-hepatectomy Liver Failure. J Gastrointest Surg 17, 593–605 (2013). https://doi.org/10.1007/s11605-012-2048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-012-2048-6

Keywords

Navigation