Skip to main content

Advertisement

Log in

Knockdown of microRNA-21 Inhibits Proliferation and Increases Cell Death by Targeting Programmed Cell Death 4 (PDCD4) in Pancreatic Ductal Adenocarcinoma

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Objective

This study aims to examine the expression of a panel of five microRNAs (miRNA) in pancreatic ductal adenocarcinoma (PDAC) and the functional effect of miR-21 inhibition in PDAC cell lines.

Background

miRNA are short, non-coding RNA molecules, which play important roles in several cellular processes by silencing expression of their target genes through translational repression or mRNA degradation. They are often aberrantly expressed in cancer, and this dysregulation can promote carcinogenesis by altering the expression of tumour suppressor or oncogenes.

Methods

miRNA expression levels were measured in 24 PDAC tumour/matched adjacent normal tissue samples and three PDAC cell lines using reverse transcription polymerase chain reaction. Levels of cell proliferation and death and expression of programmed cell death 4 (PDCD4; tumour suppressor) were studied in PDAC cells (MIA-Pa-Ca-2) in the absence or presence of a miR-21 inhibitor.

Results

PDAC primary tissues and cell lines displayed a consistent upregulation of miR-21 (P < 0.0001) and downregulation of both miR-148a (P < 0.0001) and miR-375 (P < 0.0001) relative to adjacent normal tissue. Furthermore, miR-21 levels in the primary tumours correlated with disease stage (P < 0.0001). Inhibition of miR-21 in MIA-Pa-Ca-2 PDAC cells led to reduced cell proliferation (P < 0.01) and increased cell death (P < 0.01), with simultaneous increase in levels of the tumour suppressor, PDCD4 (P < 0.01).

Conclusion

miRNA expression profiles may be used as biomarkers for detecting pancreatic cancer. Moreover, miR-21 could be a predictor of disease progression and a possible therapeutic target in part by upregulating PDCD4 in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. American Gastroenterological Association medical position statement: epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. Gastroenterology, 1999. 117(6): p. 1463–84.

  2. Pitt, H.A., Curative treatment for pancreatic neoplasms. Standard resection. Surg Clin North Am, 1995. 75(5): p. 891–904.

    CAS  Google Scholar 

  3. Neoptolemos, J.P., et al., Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet, 2001. 358(9293): p. 1576–85.

    Article  PubMed  CAS  Google Scholar 

  4. Jemal, A., et al., Cancer statistics, 2005. CA Cancer J Clin, 2005. 55(1): p. 10–30.

    Article  PubMed  Google Scholar 

  5. Richter, A., et al., Long-term results of partial pancreaticoduodenectomy for ductal adenocarcinoma of the pancreatic head: 25-year experience. World J Surg, 2003. 27(3): p. 324–9.

    Article  PubMed  Google Scholar 

  6. Bae, Y.K. and M.M. Barr, Sensory roles of neuronal cilia: cilia development, morphogenesis, and function in C. elegans. Front Biosci, 2008. 13: p. 5959–74.

    Article  PubMed  CAS  Google Scholar 

  7. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281–97.

    Article  PubMed  CAS  Google Scholar 

  8. Dillhoff, M., S.E. Wojcik, and M. Bloomston, MicroRNAs in solid tumors. J Surg Res, 2009. 154(2): p. 349–54.

    Article  PubMed  CAS  Google Scholar 

  9. Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006. 34(Database issue): p. D140–4.

    Google Scholar 

  10. Bushati, N. and S.M. Cohen, microRNA functions. Annu Rev Cell Dev Biol, 2007. 23: p. 175–205.

    Article  PubMed  CAS  Google Scholar 

  11. Schickel, R., et al., MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene, 2008. 27(45): p. 5959–74.

    Article  PubMed  CAS  Google Scholar 

  12. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005. 435(7043): p. 828–33.

    Article  PubMed  CAS  Google Scholar 

  13. Ryu, J.K., et al., Aberrant microRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology, 2010. 10(1): p. 66–73.

    Article  PubMed  CAS  Google Scholar 

  14. du Rieu, M.C., et al., MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin Chem, 2010. 56(4): p. 603–12.

    Article  PubMed  Google Scholar 

  15. Calin, G.A. and C.M. Croce, MicroRNA signatures in human cancers. Nat Rev Cancer, 2006. 6(11): p. 857–66.

    Article  PubMed  CAS  Google Scholar 

  16. Stahlhut Espinosa, C.E. and F.J. Slack, The role of microRNAs in cancer. Yale J Biol Med, 2006. 79(3–4): p. 131–40.

    PubMed  Google Scholar 

  17. Chan, J.A., A.M. Krichevsky, and K.S. Kosik, MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 2005. 65(14): p. 6029–33.

    Article  PubMed  CAS  Google Scholar 

  18. Ribas, J., et al., miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res, 2009. 69(18): p. 7165–9.

    Article  PubMed  CAS  Google Scholar 

  19. Meng, F., et al., Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology, 2006. 130(7): p. 2113–29.

    Article  PubMed  CAS  Google Scholar 

  20. Yao, Q., et al., MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun, 2009. 388(3): p. 539–42.

    Article  PubMed  CAS  Google Scholar 

  21. Frankel, L.B., et al., Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem, 2008. 283(2): p. 1026–33.

    Article  PubMed  CAS  Google Scholar 

  22. Meng, F., et al., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007. 133(2): p. 647–58.

    Article  PubMed  CAS  Google Scholar 

  23. Zhu, S., et al., MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem, 2007. 282(19): p. 14328–36.

    Article  PubMed  CAS  Google Scholar 

  24. Gabriely, G., et al., MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol, 2008. 28(17): p. 5369–80.

    Article  PubMed  CAS  Google Scholar 

  25. Lankat-Buttgereit, B. and R. Goke, The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell, 2009. 101(6): p. 309–17.

    Article  PubMed  CAS  Google Scholar 

  26. Jansen, A.P., et al., Characterization of programmed cell death 4 in multiple human cancers reveals a novel enhancer of drug sensitivity. Mol Cancer Ther, 2004. 3(2): p. 103–10.

    PubMed  CAS  Google Scholar 

  27. Ma, G., et al., [Expression of programmed cell death 4 and its clinicopathological significance in human pancreatic cancer]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2005. 27(5): p. 597–600.

    PubMed  CAS  Google Scholar 

  28. Selaru, F.M., et al., MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology, 2009. 49(5): p. 1595–601.

    Article  PubMed  CAS  Google Scholar 

  29. Asangani, I.A., et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008. 27(15): p. 2128–36.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, Y., et al., MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett, 2008. 272(2): p. 197–205.

    Article  PubMed  CAS  Google Scholar 

  31. Ding, J., et al., Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol, 2010. 12(4): p. 390–9.

    Article  PubMed  CAS  Google Scholar 

  32. Bloomston, M., et al., MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA, 2007. 297(17): p. 1901–8.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, Y., et al., Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg, 2009. 33(4): p. 698–709.

    Article  PubMed  Google Scholar 

  34. Ambion, I. TRI Reagent Solution: RNA/DNA/Protein Isolation Reagent. 2008 [cited; Available from: http://www.ambion.com/techlib/prot/bp_9738.pdf].

  35. Dharmacon, T.S. miRIDIAN microRNA Mimics, Hairpin Inhibitors and Negative Controls. 2010 [cited; Available from: http://www.dharmacon.com/product/productlandingtemplate.aspx?id=281].

  36. Promega. CellTiter 96® AQ ueous Non-Radioactive Cell Proliferation Assay. 2009 [cited; Available from: http://www.promega.com/tbs/tb169/tb169.html].

  37. Merck. QIA20 Cell Death Detection (Nuclear Matrix Protein) ELISA Kit Protocol. 2009 [cited; Available from: http://www.merck-chemicals.com/life-science-research/cell-death-detection-nuclear-matrix-protein-elisa-kit/EMD_BIO-QIA20/p_uLGb.s1O98sAAAEnlo85SfM4].

  38. Bhatti, I., et al., Small RNA: a large contributor to carcinogenesis? J Gastrointest Surg, 2009. 13(7): p. 1379–88.

    Article  PubMed  Google Scholar 

  39. Fabbri, M., et al., MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia, 2008. 22(6): p. 1095–105.

    Article  PubMed  CAS  Google Scholar 

  40. Chen, Y., et al., Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg, 2010. 14: p. 1170–9

    Article  PubMed  Google Scholar 

  41. Srinivasan, M., D. Sedmak, and S. Jewell, Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol, 2002. 161(6): p. 1961–71.

    Article  PubMed  CAS  Google Scholar 

  42. Cronin, M., et al., Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol, 2004. 164(1): p. 35–42.

    Article  PubMed  CAS  Google Scholar 

  43. Li, J., et al., Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol, 2007. 7: p. 36.

    Article  PubMed  Google Scholar 

  44. Wang, B., et al., TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene, 2010. 29(12): p. 1787–97.

    Article  PubMed  CAS  Google Scholar 

  45. Zhu, W., et al., miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer, 2010.

  46. James, T.A., et al., Risk factors associated with earlier age of onset in familial pancreatic carcinoma. Cancer, 2004. 101(12): p. 2722–6.

    Article  PubMed  Google Scholar 

  47. Farma, J.M., et al., PET/CT fusion scan enhances CT staging in patients with pancreatic neoplasms. Ann Surg Oncol, 2008. 15(9): p. 2465–71.

    Article  PubMed  Google Scholar 

  48. Dillhoff, M., et al., MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg, 2008. 12: p. 2171–6.

    Article  PubMed  Google Scholar 

  49. Kloosterman, W.P. and R.H. Plasterk, The diverse functions of microRNAs in animal development and disease. Dev Cell, 2006. 11(4): p. 441–50.

    Article  PubMed  CAS  Google Scholar 

  50. Grimson, A., et al., MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 2007. 27(1): p. 91–105.

    Article  PubMed  CAS  Google Scholar 

  51. Chen, X., et al., Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008. 18(10): p. 997–1006.

    Article  PubMed  CAS  Google Scholar 

  52. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513–8.

    Article  PubMed  CAS  Google Scholar 

  53. Szafranska, A.E., et al., Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin Chem, 2008. 54(10): p. 1716–24.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, J., et al., MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila Pa), 2009. 2(9): p. 807–13.

    Article  CAS  Google Scholar 

  55. Si, M.L., et al., miR-21-mediated tumor growth. Oncogene, 2007. 26(19): p. 2799–803.

    Article  PubMed  CAS  Google Scholar 

  56. Corsten, M.F., et al., MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res, 2007. 67(19): p. 8994–9000.

    Article  PubMed  CAS  Google Scholar 

  57. Schetter, A.J., et al., Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res, 2009. 15(18): p. 5878–87.

    Article  PubMed  CAS  Google Scholar 

  58. Feber, A., et al., MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg, 2008. 135(2): p. 255–60; discussion 260.

    Article  PubMed  CAS  Google Scholar 

  59. Chan, S.H., et al., miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res, 2008. 28(2A): p. 907–11.

    PubMed  Google Scholar 

  60. Moriyama, T., et al., MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther, 2009. 8: p. 1067–74.

    Article  PubMed  CAS  Google Scholar 

  61. Motoyama, K., et al., Clinicopathological and prognostic significance of PDCD4 and microRNA-21 in human gastric cancer. Int J Oncol, 2010. 36(5): p. 1089–95.

    PubMed  CAS  Google Scholar 

  62. Mathe, E.A., et al., MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res, 2009. 15(19): p. 6192–200.

    Article  PubMed  CAS  Google Scholar 

  63. Tsukamoto, Y., et al., MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res, 2010. 70(6): p. 2339–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest

None of the authors has a conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Bhatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatti, I., Lee, A., James, V. et al. Knockdown of microRNA-21 Inhibits Proliferation and Increases Cell Death by Targeting Programmed Cell Death 4 (PDCD4) in Pancreatic Ductal Adenocarcinoma. J Gastrointest Surg 15, 199–208 (2011). https://doi.org/10.1007/s11605-010-1381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-010-1381-x

Keywords

Navigation