Skip to main content

Advertisement

Log in

Beyond Epithelial to Mesenchymal Transition: A Novel Role for the Transcription Factor Snail in Inflammation and Wound Healing

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Introduction

Snail, a transcription factor linked to epithelial to mesenchymal transition (EMT) during embryonic development and tumor progression, is associated with migration of cells. During inflammation and tissue injury, cell movement is also observed to provide the first line of defense against bacteria and to promote wound healing. Therefore, we studied the function of Snail in activated macrophages in a variety of inflammatory processes.

Materials and Methods

In this study, we examined the expression and localization of Snail during inflammation and tissue injury in rats and human tissue specimens, by immunohistochemistry, Western blot, and real-time PCR. We investigated Snail expression after stimulation of macrophages with TGF-β1, LPS, Interleukin-8, and MMP-3 in vitro. To further understand the role of Snail in activated macrophages, we used Stealth siRNA against Snail, transfected the human macrophage cell line THP-1, and measured migration of cells in an in vitro invasion assay.

Results and Discussion

We found a strong, transient, and time-dependent activation of Snail in migrating macrophages at the sites of injury in vivo and in vitro, as well as in patients with inflammatory bowel disease. Furthermore, we showed that induction of Snail in macrophages is dependent on TGF-β1 signaling pathway. Downregulation of Snail by Stealth siRNA led to impaired migration of THP-1 cells in an invasion assay after stimulation with TGF-β1.

Conclusion

We conclude that TGF-β1 induced migration of activated macrophages during inflammation and wound healing is mediated by snail. These results give insights in a novel EMT-like mechanism present in immune cell movement during tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7(2):131–142.

    Article  CAS  PubMed  Google Scholar 

  2. Acloque H, Thiery JP, Nieto MA. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep 2008;9(4):322–326.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003;15(6):740–746.

    Article  CAS  PubMed  Google Scholar 

  4. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002;3(3):155–166.

    Article  CAS  PubMed  Google Scholar 

  5. Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005;132(14):3151–3161.

    Article  CAS  PubMed  Google Scholar 

  6. Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am 1997;77(3):509–528.

    Article  CAS  PubMed  Google Scholar 

  7. MacDonald TT, Di Sabatino A, Gordon JN. Immunopathogenesis of Crohn’s disease. JPEN J Parenter Enteral Nutr 2005;29(4 Suppl):S118–S124. discussion S124–S125, S184–S188.

    Article  CAS  PubMed  Google Scholar 

  8. Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science 2005;307(5717):1920–1925.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts AB. Transforming growth factor-beta: activity and efficacy in animal models of wound healing. Wound Repair Regen 1995;3(4):408–418.

    Article  CAS  PubMed  Google Scholar 

  10. Wahl SM et al. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA 1987;84(16):5788–5792.

    Article  CAS  PubMed  Google Scholar 

  11. Del Zotto B et al. TGF-beta1 production in inflammatory bowel disease: differing production patterns in Crohn’s disease and ulcerative colitis. Clin Exp Immunol 2003;134(1):120–126.

    Article  CAS  PubMed  Google Scholar 

  12. Ohtsuka Y, Sanderson IR. Transforming growth factor-beta: an important cytokine in the mucosal immune response. Curr Opin Gastroenterol 2000;16(6):541–545.

    Article  CAS  PubMed  Google Scholar 

  13. Smythies LE et al. Mucosal IL-8 and TGF-beta recruit blood monocytes: evidence for cross-talk between the lamina propria stroma and myeloid cells. J Leukoc Biol 2006;80(3):492–499.

    Article  CAS  PubMed  Google Scholar 

  14. Nerusu KC et al. Matrix metalloproteinase-3 (stromelysin-1) in acute inflammatory tissue injury. Exp Mol Pathol 2007;83(2):169–176.

    Article  CAS  PubMed  Google Scholar 

  15. Shima I et al. Expression of matrix metalloproteinases in wound healing after glaucoma filtration surgery in rabbits. Ophthalmic Res 2007;39(6):315–324.

    Article  CAS  PubMed  Google Scholar 

  16. Hotz B et al. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 2007;13(16):4769–4776.

    Article  CAS  PubMed  Google Scholar 

  17. Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005;6(12):1182–1190.

    Article  CAS  PubMed  Google Scholar 

  18. Granger DN, Kubes P. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 1994;55(5):662–675.

    CAS  PubMed  Google Scholar 

  19. Diacovo TG et al. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 1996;88(1):146–157.

    CAS  PubMed  Google Scholar 

  20. Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. Faseb J 1994;8(8):504–512.

    CAS  PubMed  Google Scholar 

  21. Goerdt S et al. Alternative versus classical activation of macrophages. Pathobiology 1999;67(5–6):222–226.

    Article  CAS  PubMed  Google Scholar 

  22. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5(12):953–964.

    Article  CAS  PubMed  Google Scholar 

  23. Godaly G et al. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol 2001;69(6):899–906.

    CAS  PubMed  Google Scholar 

  24. Smythies LE et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 2005;115(1):66–75.

    CAS  PubMed  Google Scholar 

  25. Teng Y, Zeisberg M, Kalluri R. Transcriptional regulation of epithelial-mesenchymal transition. J Clin Invest 2007;117(2):304–306.

    Article  CAS  PubMed  Google Scholar 

  26. Arias AM. Epithelial mesenchymal interactions in cancer and development. Cell 2001;105(4):425–431.

    Article  CAS  PubMed  Google Scholar 

  27. Gavert N, Ben-Ze’ev A. Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med 2008;14(5):199–209.

    Article  CAS  PubMed  Google Scholar 

  28. Metzstein MM, Horvitz HR. The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell 1999;4(3):309–319.

    Article  CAS  PubMed  Google Scholar 

  29. Mahida YR et al. Migration of human intestinal lamina propria lymphocytes, macrophages and eosinophils following the loss of surface epithelial cells. Clin Exp Immunol 1997;109(2):377–386.

    Article  CAS  PubMed  Google Scholar 

  30. Duffield JS. The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 2003;104(1):27–38.

    Article  CAS  Google Scholar 

  31. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001;48(4):526–535.

    Article  CAS  PubMed  Google Scholar 

  32. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007;448(7152):427–434.

    Article  CAS  PubMed  Google Scholar 

  33. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003;3(7):521–533.

    Article  CAS  PubMed  Google Scholar 

  34. Neurath MF et al. Regulation of T-cell apoptosis in inflammatory bowel disease: to die or not to die, that is the mucosal question. Trends Immunol 2001;22(1):21–26.

    Article  CAS  PubMed  Google Scholar 

  35. Radisky DC et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005;436(7047):123–127.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marco Arndt, Steffi Valdeig, and René Heydrich for their technical support, and Professor C. Loddenkemper, MD, Charité, Department of Pathology for his expertise in interpretation of the histological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Georg Hotz.

Additional information

Birgit Hotz and Alexander Visekruna contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotz, B., Visekruna, A., Buhr, HJ. et al. Beyond Epithelial to Mesenchymal Transition: A Novel Role for the Transcription Factor Snail in Inflammation and Wound Healing. J Gastrointest Surg 14, 388–397 (2010). https://doi.org/10.1007/s11605-009-1068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-009-1068-3

Keywords

Navigation