Skip to main content

Advertisement

Log in

Downregulation of Adiponectin/AdipoR2 is Associated with Steatohepatitis in Obese Mice

  • 2008 SSAT Quickshot Presentation
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Background

Recent evidence suggests that obesity is associated with hypo-adiponectinmia and chronic inflammation. Adiponectin regulates fat storage, energy expenditure, and inflammation. We propose that high fat diet induces steatohepatitis, reduces serum adiponectin, and liver adiponectin receptors.

Methods

A 4-week-old C57BL male mice were fed high fat diet (n = 8) or regular chow (control; n = 6) for 7 weeks. Body weight, liver weight, and serum adiponectin were measured. Liver sections were stained with hematoxylin and eosin and oil red for fat content. Liver homogenates were used for protein (immunoblotting) and mRNA (reverse transcription PCR) of Toll-like receptor 4 (TLR4), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, sterol regulatory element-binding proteins (SREBP)-1c, and adiponectin receptors (AdipoR1/AdipoR2) in addition to nuclear phorsphorylated p65NF-κB. Gels were quantified using densitometry; t test was used, and p < 0.05 was significant.

Results

High fat diet increased body (50%) and liver weight (33%), as well as hepatocyte fat content and ballooning. Mice fed high fat diet exhibited reduced serum adiponectin and liver AdipoR2. High fat diet increased hepatic levels of SREBP-1c, TLR4, TNF-α, and IL-6 protein and mRNA and increased activation of p65NF-κB.

Conclusions

Diet-induced liver steatosis is associated with increased lipogensis, upregulation of pro-inflammatory cytokines, and transcription factors as well as downregulation of AdipoR2. Reduction in serum adiponectin suggests that adiponectin signaling may be the crosslink between high fat diet, hepatic inflammation, and nonalcoholic fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006;17(1):4–12.

    CAS  PubMed  Google Scholar 

  2. Kahn SE, Hull RL, Utzschneider KM. Mechanisms of linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444(7121):840–846.

    Article  CAS  PubMed  Google Scholar 

  3. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006;43(2 Suppl 1):S99–S112.

    Article  CAS  PubMed  Google Scholar 

  4. Shin JY, Kim SY, Jeung MJ, et al. Serum adiponectin, C-reactive protein and TNF-alpha level in obese Korean children. J Pediatr Endocrinol Metab 2008;21(1):23–29.

    CAS  PubMed  Google Scholar 

  5. Dubois SD, Heilbronn LK, Smith SH, ALbu JB, Kelley DE, Ravussin E. Decreased expression of Adopogenenic genes in obese subjects with type 2 diabetes. Obesity 2006;14(9):1543–1552.

    Article  CAS  PubMed  Google Scholar 

  6. Devaraj S, Swarbrick MM, Singh U, Adams-Huet B, Havel PJ, Jialal I. CRP and adiponectin and its oligomers in the metabolic syndrome: evaluation of new laboratory-based biomarkers. Am J Clin Pathol 2008;129(5):815–822.

    Article  CAS  PubMed  Google Scholar 

  7. Rogers C, Ajmo J, You M. Adiponectin and alcoholic fatty liver disease. IUBMB Life 2008;60(12):790–797.

    Article  CAS  PubMed  Google Scholar 

  8. Yamauchi T, Nio Y, Maki T, et al. Targeted disruptionof AdipoR1 and Adip[oR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 2007;13:332–339.

    Article  CAS  PubMed  Google Scholar 

  9. Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 2006;55(9):2562–2570.

    Article  CAS  PubMed  Google Scholar 

  10. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, et al. Loss of -function mutation in Toll-like receptor 4 prevents diet -induced obesity and insulin resistance. Diabetes 2007;56(8):1986–1998.

    Article  CAS  PubMed  Google Scholar 

  11. Peng Y, Murr M. Establishment of immortalized rat Kupffer cell lines. Cytokine 2007;37(3):185–191.

    Article  CAS  PubMed  Google Scholar 

  12. Ota T, Takamuri T, Kuiichita S, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 2007;132:282–293.

    Article  CAS  PubMed  Google Scholar 

  13. Subauste AR, Burant CF. Role of FOXO1 in FFA-induced oxidative stree in adipocytes. Am J Physiol Endocrinol Metab 2007;293(1):E159–E164.

    Article  CAS  PubMed  Google Scholar 

  14. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444(7121):860–867.

    Article  CAS  PubMed  Google Scholar 

  15. Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-acoholic or acoholic steatohepatitis. J Toxicol Sci 2007;32:453–468.

    Article  CAS  PubMed  Google Scholar 

  16. Peng Y, Gallagher S, Landmann R, Haines K, Murr M. The role of p65NF-kappaB/RelA in pancreatitis-induced Kupffer cells apoptosis. J Gastrointest Surg 2006;10(6):837–847.

    Article  PubMed  Google Scholar 

  17. Peng Y, Sigua C, Rideout D, Murr M. Protein Kinase C-zeta mediates Kupffer cell apoptosis via ERK1/2. J Gastrointest Surg 2009; in press.

  18. Peng Y, Sigua C, Rideout D, Murr M. deletion of toll-like receptor-4 downregulates protein kinase C-zeta and attenuates liver injury in experimental pancreatitis. Surgery 2008;143(5):679–685.

    Article  PubMed  Google Scholar 

  19. Peng Y, Sigua C, Karsonovich C, Murr M. Protein kinase C-zeta(PKC-zeta) regulates Kupffer cells apoptosis during eperimental sepsis. J Gastrointest Surg 2007;11(12):1712–1721.

    Article  PubMed  Google Scholar 

  20. Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: invivo and in vitro investigations in humans. Am J Physiol Metab 2003;285:E527–E533.

    CAS  Google Scholar 

  21. Clark JM, Alkhuraishi AR, Solga SF, Alli P, Diehl AM, Magnuson TH. Roux-en-Y gastric bypass improves liver histology in patients with non-alcoholic fatty liver disease. Obes Res 2005;13(7):1180–1186.

    Article  PubMed  Google Scholar 

  22. Mendez-Sanchz N, Chavez-Tapia NC, Zamora-Valdes D, Urbe M. Adiponectin, structure, function and pathophysiological implications in non-alcoholic fatty liver disease. Mini Rev Med Chem 2006;6:651–656.

    Article  Google Scholar 

  23. Yan E, Durazo F, Tong M, Hong K. Nonalcoholic fatty liver disease: pathogenesis, identification, progression, and management. Nutr Rev 2007;65:376–384.

    Article  PubMed  Google Scholar 

  24. Kadowaki T, Yamauchi T, Kubota N, Hara H, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes and metabolic syndrome. J Clin Invest 2006;116:1784–1792.

    Article  CAS  PubMed  Google Scholar 

  25. Shklyaev S, Aslanidi C, Tennant M, et al. Sustained perpheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc Natl Acad Sci U S A 2003;100:14217–14222.

    Article  CAS  PubMed  Google Scholar 

  26. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003;423(6941):762–769.

    Article  CAS  PubMed  Google Scholar 

  27. Mao X, Kikani CK, Riojas RA, et al. APPL1 binda to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 2006;8:561–523.

    Article  Google Scholar 

  28. Murr MM, Yang J, Fier A, et al. Regulation of Kupffer cell TNF gene expression during experimental acute pancreatitis: the role of p38-MAPK, ERK1/2, SAPK/JNK, and NF-kappaB. J Gastrointest Surg 2003;7(1):20–25.

    Article  PubMed  Google Scholar 

  29. Peng Y, Sigua CA, Rideout D, Murr MM. Deletion of Toll-Like Receptor-4 downregulates protein kinase C-zeta and attenuates liver injury in experimental pancreatitis. Surgery 2008;143:679–685.

    Article  PubMed  Google Scholar 

  30. O'Rourke R. Inflammation in obesity-related diseases. Surgery 2009;145:255–259.

    Article  PubMed  Google Scholar 

  31. Doubois S, Heilbronn L, Smith S, Albu J, Kelly D, Ravussion E. Decreased expression of Adipogenenic genes in obese subjects with type 2 diabetes. Obesity 2006;14(9):1543–1552.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel M. Murr.

Additional information

This work was support by the VA Merit Award (MM), NIH R01 AA013623-06, AA015951-03 (MY), NIH R01 DK065969-05, and VA Merit Award (RF).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Rideout, D., Rakita, S. et al. Downregulation of Adiponectin/AdipoR2 is Associated with Steatohepatitis in Obese Mice. J Gastrointest Surg 13, 2043–2049 (2009). https://doi.org/10.1007/s11605-009-1032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-009-1032-2

Keywords

Navigation