Skip to main content

Advertisement

Log in

Role of Vagal Innervation in Diurnal Rhythm of Intestinal Peptide Transporter 1 (PEPT1)

  • 2009 SSAT Quick Shot Presentation
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Background

Protein is absorbed predominantly as di/tripeptides via H+/peptide cotransporter-1 (PEPT1). We demonstrated previously diurnal variations in expression and function of duodenal and jejunal but not ileal PEPT1; neural regulation of this pattern is unexplored.

Hypothesis

Complete abdominal vagotomy abolishes diurnal variations in gene expression and transport function of PEPT1.

Methods

Twenty-four rats maintained in a 12-h light/dark room [6AM–6PM] underwent abdominal vagotomy; 24 other rats were controls. Four weeks later, mucosal levels of mRNA and protein were measured at 9AM, 3PM, 9PM, and 3AM (n = 6 each) by quantitative real-time PCR and Western blots, respectively; transporter-mediated uptake of dipeptide (Gly–Sar) was measured by the everted-sleeve technique.

Results

Diurnal variation in mRNA, as in controls, was retained post-vagotomy in duodenum and jejunum (peak at 3PM, p < 0.05) but not in ileum. Diurnal variations in expression of protein and Gly–Sar uptake, however, were absent post-vagotomy (p > 0.3). Similar to controls, maximal uptake was in jejunum after vagotomy (V max, nmol/cm/min: jejunum vs. duodenum and ileum; 163 vs. 88 and 71 at 3AM; p < 0.04); K m remained unchanged.

Conclusions

Vagal innervation appears to mediate in part diurnal variations in protein expression and transport function of PEPT1, but not diurnal variation in mRNA expression of PEPT1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balsiger BM, Sarr MG. Chronic extrinsic denervation of the small bowel: effect on adrenergic and cholinergic contractile mechanisms in canine ileal circular muscle. Surgery 2003;134:783–790.

    Article  PubMed  Google Scholar 

  2. Tanaka T, Zyromski NJ, Libsch KD et al. Canine ileal motor activity after a model of jejunoileal autotransplantation. Ann Surg 2003;237:192–200.

    Article  PubMed  Google Scholar 

  3. Libsch KD, Zarroug AE, Duininck TM, Ueno T, Duenes JA, Sarr MG. Extrinsic denervation alters postprandial absorption of glucose and glutamine in the ileum: implications for small bowel transplantation. J Gastrointest Surg. 2005;9:219–226.

    Article  PubMed  Google Scholar 

  4. Herkes SM, Smith CD, Sarr MG. Jejunal responses to absorptive and secretory stimuli in the neurally isolated jejunum in vivo. Surgery 1994;116:576–586.

    CAS  PubMed  Google Scholar 

  5. Ioshi AJ, Sarr MG. Intestinal transplantation: effects on ileal enteric absorptive physiology. Surgery 1995;117:545–553.

    Article  Google Scholar 

  6. Foley MK, Inoue Y, Souba WW et al. Extrinsic innervation modulates canine jejunal transport of glutamine, alanine, leucine, and glucose. Surgery 1998;123:321–329.

    CAS  PubMed  Google Scholar 

  7. Houghton SG, Duenes JA, Fatima J, Iqbal CW, Kasparek MS, Sarr MG. Coordinated, diurnal hexose transporter expression in rat small bowel: implications for small bowel resection. Surgery 2008;143:79–93.

    Article  PubMed  Google Scholar 

  8. Houghton SG, Zarroug AE, Duenes JA, Fernandez-Zapico ME, Sarr MG. The diurnal periodicity of hexose transporter mRNA and protein levels in the rat jejunum: role of vagal innervation. Surgery 2006;139:542–549.

    Article  PubMed  Google Scholar 

  9. Iqbal CW, Fatima J, Duenes JA, Houghton SG, Kasparek M, Sarr MG. Expression and function of intestinal hexose transporters after small intestinal transplantation and intestinal denervation in the rat. Surgery 2009;146:100–112.

    Article  PubMed  Google Scholar 

  10. Iqbal CW, Qandeel HG, Zheng Y, Duenes JA, Sarr MG. Mechanisms of ileal adaptation for glucose absorption after proximal-based small bowel resection. J Gastrointest Surg 2008;12:1854–1864.

    Article  CAS  PubMed  Google Scholar 

  11. Qandeel HG, Duenes JA, Zheng Y, Sarr MG. Diurnal expression and function of peptide transporter 1 (PEPT1). J Surg Res (2009). Abstract presented at the Academic Surgical Congress 4th Annual Meeting, February, 2009, Fort Myers, FL. J Surg Res 2009 May 3. doi:10.1016/j.jss.2009.03.052

  12. Qandeel HG, Hernandez DJ, Alonso F, Duenes JA, Zheng Y, Sarr MG. Peptide absorption after massive proximal small bowel resection: mechanisms of ileal adaptation. Abstract presented at Minnesota Surgical Society, May, 2009, St. Paul, MN.

  13. Adibi SA. The oligopeptide transporter (PEPT1) in human intestine: biology and function. Gastroenterology 1997;113:332–340.

    Article  CAS  PubMed  Google Scholar 

  14. Daniel H. Molecular and integrative physiology of intestinal peptide transport. Ann Rev Physiol 2004;66:361–384.

    Article  CAS  Google Scholar 

  15. Saito H, Okuda M, Terada T, Sasaki S, Inui K. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of β-lactam antibiotics in the intestine and kidney. J Pharmacol Exp Ther 1995;275:1631–1637.

    CAS  PubMed  Google Scholar 

  16. Pan X, Terada T, Okuda M, Inui K. The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in rats. J Nutr 2004;134:2211–2215.

    CAS  PubMed  Google Scholar 

  17. Fatima J, Iqbal CW, Houghton SG, Kasparek MS, Duenes JA, Zheng Y, Sarr MG. Hexose transporter expression and function in mouse small intestine: role of diurnal rhythm. J Gastrointest Surg 2009;13:634–641.

    Article  PubMed  Google Scholar 

  18. Balakrishnan A, Stearns AT, Rounds J, Irani J, Giuffrida M, Rhoads DB, Ashley SW, Tavakkolizadeh A. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (SGLT1). Surgery 2008;143:813–818.

    Article  PubMed  Google Scholar 

  19. Pan X, Terada T, Irie M, Saito H, Inui K. Diurnal rhythm of H+-peptide cotransporter in rat small intestine. Am J Physiol 2002;283:G57–G64.

    CAS  Google Scholar 

  20. Erickson RH, Gum JR, Lindstrom MM, Mckean D, Kim YS. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs. Biochem Biophys Res Commun 1995;216:249–257.

    Article  CAS  PubMed  Google Scholar 

  21. Thamotharan M, Bawani SZ, Zhou XD, Adibi SA. Hormonal regulation of oligopeptide transporter PEPT1 in a human intestinal cell line. Am J Physiol 1999;276:C821–C826.

    CAS  PubMed  Google Scholar 

  22. Adibi SA. Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am J Physiol 2003;285:G779–G788.

    CAS  Google Scholar 

  23. Tavakkolizadeh A, Ramsanahie A, Levitsky LL, Zinner MJ, Whang EE, Ashley SW, Rhoads DB. Differential role of vagus nerve in maintaining diurnal gene expression rhythms in the proximal small intestine. J Surg Res 2005;129:73–78.

    Article  CAS  PubMed  Google Scholar 

  24. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 2002;29:23–39.

    Article  CAS  PubMed  Google Scholar 

  25. Stahlberg A, Hakansson J, Xian X et al. Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 2004;50:509–515.

    Article  CAS  PubMed  Google Scholar 

  26. Matthews DM, Grandy RH, Taylor E, Burston D. Influx of two dipeptides, glycylsarcosine and l-glutamyl-l-glutamic acid, into hamster jejunum in vitro. Clin Sci 1979;56:15.

    CAS  PubMed  Google Scholar 

  27. Rhoads DB, Rosenbaum DH, Unsal H, Isselbacher KJ, Levitsky LL. Circadian periodicity of intestinal Na+/glucose cotransporter 1 mRNA levels is transcriptionally regulated. J Biol Chem 1998;273:9510–9516.

    Article  CAS  PubMed  Google Scholar 

  28. Iqbal CW, Fatima J, Sarr MG. Loss of diurnal variation in transporter-mediated glucose uptake after small bowel transplantation. Abstract presented at the 3rd annual Academic Surgical Congress, February, 2008, Huntington Beach, CA.

  29. Stearns AT, Balakrishnan A, Rounds J, Rhoads DB, Ashley SW, Tavakkolizadeh A. Capsaicin-sensitive vagal afferents modulate posttranscriptional regulation of the rat Na+/glucose cotransporter SGLT1. Am J Physiol Gastrointest Liver Physiol 2008;294:1078–1083.

    Article  Google Scholar 

  30. Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM. Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 2007;133:1250–1260.

    Article  CAS  PubMed  Google Scholar 

  31. Sladek M, Rybova M, Jindrakova Z, Zemanova Z, Polidarova L, Mrnka L et al. Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 2007;133:1240–1249.

    Article  CAS  PubMed  Google Scholar 

  32. Saifur RM, Emoto N, Nonaka H, Okura R, Nishimura M, Yagita K et al. Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int 2005;67:1410–1419.

    Article  Google Scholar 

  33. Helliwell PA, Kellett GL. The active and passive components of glucose absorption in rat jejunum under low and high perfusion stress. J Physiol 2002;544:579–589.

    Article  CAS  PubMed  Google Scholar 

  34. Kellett GL, Brot-Laroche E. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes 2005;54:3056–3062.

    Article  CAS  PubMed  Google Scholar 

  35. Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 2008;28:35–54.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Y, Duenes JA, Qandeel HG, Sarr MG. Glucose-dependent translocation of GLUT2 in human intestinal Caco2 cells. Abstract presented at American Gastroenterological Association (AGA), June, 2009 Chicago, IL.

  37. Thamotharan M, Bawani SZ, Zhou X, Adibi SA. Hormonal regulation of oligopeptide transporter Pept-1 in a human intestinal cell line. Am J Physiol Cell Physiol 1999;276:821–826.

    Google Scholar 

  38. Buyse M, Berlioz F, Guilmeau S, Tsocas A, Voisin T, Péranzi G, Merlin D, Laburthe M, Lewin MJM, Rozé C, Bado A. PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine. J Clin Invest 2001;108:1483–1494.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Mary Elizabeth Groff Surgical Medical Research and Education Charitable Trust for the generous funding in support of this work. Also, we thank Deborah Frank for her superb secretarial expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Sarr.

Additional information

Presented in part at the Society for Surgery of the Alimentary Tract 50th Annual Meeting, May 30 to June 4, 2009, Chicago, Illinois and published in abstract form in Gastroenterology, May 2009.

Research supported in part by a grant from the Mary E. Groff Foundation and NIH R01 DK 39337-18 (MGS)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qandeel, H.G., Alonso, F., Hernandez, D.J. et al. Role of Vagal Innervation in Diurnal Rhythm of Intestinal Peptide Transporter 1 (PEPT1). J Gastrointest Surg 13, 1976–1985 (2009). https://doi.org/10.1007/s11605-009-0984-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-009-0984-6

Keywords

Navigation