Skip to main content

Advertisement

Log in

MicroRNA-143 and -205 Expression in Neosquamous Esophageal Epithelium Following Argon Plasma Ablation of Barrett’s Esophagus

  • original article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Introduction

Ablation of Barrett’s esophagus using Argon plasma coagulation (APC) is usually followed by the formation of a neosquamous epithelium. Investigating simple columnar or stratified squamous epithelium associated cytokeratin and microRNA (miRNA) expression in neo-squamous epithelium could help determine the identity and stability of the neosquamous epithelium.

Methods

Nine patients underwent ablation of Barrett’s esophagus with APC. Biopsies were collected from Barrett’s esophagus mucosa and proximal normal squamous epithelium before ablation, and from neosquamous and normal squamous epithelium after ablation. Additional esophageal mucosal biopsies from ten nonrefluxing subjects were used as a reference. RNA was extracted and real-time polymerase chain reaction was used to measure the expression of the cytokeratins CK-8 and CK-14 and the microRNAs miR-143 and miR-205.

Results

CK-8 and miR-143 expression were significantly higher in Barrett’s esophagus mucosa, compared to neosquamous and normal squamous epithelium before and after APC, whereas miRNA-205 and CK-14 expression was significantly lower in Barrett’s esophagus mucosa compared to all categories of squamous mucosa. The expression of CK-8, CK-14, miR-205, and miR-143 was similar between neosquamous epithelium compared to normal squamous epithelium in patients with Barrett’s esophagus. Only miR-143 expression was significantly higher in neosquamous and normal squamous epithelium before and after APC compared to normal squamous epithelium from control subjects (p < 0.004).

Conclusions

The expression levels of cytokeratins and miRNAs studied in post-ablation neosquamous epithelium and normal squamous epithelium in patients with Barrett’s esophagus are similar. In patients with Barrett’s esophagus, miR-143 expression is still elevated in both neosquamous mucosa, and the squamous mucosa above the metaplastic segment, suggesting that this mucosa may not be normal; i.e., it is different to that seen in subjects without Barrett’s esophagus. miR-143 could promote a Barrett’s epithelium gene expression pattern, and this could have a role in development of Barrett’s esophagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chang EY, Morris CD, Seltman AK, O’Rourke RW, Chan BK, Hunter JG, Jobe BA. The effect of antireflux surgery on esophageal carcinogenesis in patients with Barrett esophagus: a systematic review. Ann Surg 2007;246:11–21. doi:10.1097/01.sla.0000261459.10565.e9.

    Article  PubMed  Google Scholar 

  2. Ackroyd R, Tam W, Schoeman M, Devitt PG, Watson DI. Prospective randomized controlled trial of argon plasma coagulation ablation vs. endoscopic surveillance of patients with Barrett’s esophagus after antireflux surgery. Gastrointest Endosc 2004;59:1–7. doi:10.1016/S0016-5107(03)02528-8.

    Article  PubMed  Google Scholar 

  3. Bright T, Watson DI, Tam W, Game PA, Astill D, Ackroyd R, Wijnhoven BP, Devitt PG, Schoeman MN. Randomized trial of argon plasma coagulation versus endoscopic surveillance for Barrett esophagus after antireflux surgery: late results. Ann Surg 2007;246:1016–1020.

    Article  PubMed  Google Scholar 

  4. Ferraris R, Fracchia M, Foti M, Sidoli L, Taraglio S, Vigano, ’ L, Giaccone C, Rebecchi F, Meineri G, Senore C, Pera A, Gruppo Operativo Studio Precancerosi Esofagee. Barrett’s oesophagus: long-term follow-up after complete ablation with argon plasma coagulation and the factors that determine its recurrence. Aliment Pharmacol Ther 2007;25(7):835–840.

    Article  PubMed  CAS  Google Scholar 

  5. Formentini A, Schwarz A, Straeter J, Stanescu A, Henne-Bruns D. Treatment of Barrett’s esophagus with argon plasma coagulation and antireflux surgery. A retrospective analysis. Hepatogastroenterology 2007;54(79):1991–1996.

    PubMed  CAS  Google Scholar 

  6. Shand A, Dallal H, Palmer K, Ghosh S, MacIntyre M. Adenocarcinoma arising in columnar lined oesophagus following treatment with argon plasma coagulation. Gut 2001;48:580–581. doi:10.1136/gut.48.4.580b.

    Article  PubMed  CAS  Google Scholar 

  7. Van Laethem JL, Peny MO, Salmon I, Cremer M, Deviere J. Intramucosal adenocarcinoma arising under squamous re-epithelialisation of Barrett’s oesophagus. Gut 2000;46:574–577. doi:10.1136/gut.46.4.574.

    Article  PubMed  Google Scholar 

  8. Dvorak K, Ramsey L, Payne CM, Sampliner R, Fass R, Bernstein H, Prasad A, Garewal H. Abnormal expression of biomarkers in incompletely ablated Barrett’s esophagus. Ann Surg 2006;244:1031–1036. doi:10.1097/01.sla.0000224913.19922.7e.

    Article  PubMed  Google Scholar 

  9. Garewal H, Ramsey L, Sharma P, Kraus K, Sampliner R, Fass R. Biomarker studies in reversed Barrett’s esophagus. Am J Gastroenterol 1999;94:2829–2833. doi:10.1111/j.1572-0241.1999.1424_d.x.

    Article  PubMed  CAS  Google Scholar 

  10. Lopes CV, Pereira-Lima J, Hartmann AA. p53 immunohistochemical expression in Barrett’s esophagus before and after endoscopic ablation by argon plasma coagulation. Scand J Gastroenterol 2005;40:259–263. doi:10.1080/00365520510011533.

    Article  PubMed  CAS  Google Scholar 

  11. Paulson TG, Xu L, Sanchez C, Blount PL, Ayub K, Odze RD, Reid BJ. Neosquamous epithelium does not typically arise from Barrett’s epithelium. Clin Cancer Res 2006;12:1701–1706. doi:10.1158/1078-0432.CCR-05-1810.

    Article  PubMed  CAS  Google Scholar 

  12. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982;31:11–24. doi:10.1016/0092-8674(82)90400-7.

    Article  PubMed  CAS  Google Scholar 

  13. Glickman JN, Yang A, Shahsafaei A, McKeon F, Odze RD. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol 2001;32:1157–1165. doi:10.1053/hupa.2001.28951.

    Article  PubMed  CAS  Google Scholar 

  14. van Baal JW, Milano F, Rygiel AM, Bergman JJ, Rosmolen WD, van Deventer SJ, Wang KK, Peppelenbosch MP, Krishnadath KK. A comparative analysis by SAGE of gene expression profiles of Barrett’s esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology 2005;129(4):1274–1281. doi:10.1053/j.gastro.2005.07.026.

    Article  PubMed  CAS  Google Scholar 

  15. Greenawalt DM, Duong C, Smyth GK, Ciavarella ML, Thompson NJ, Tiang T, Murray WK, Thomas RJ, Phillips WA. Gene expression profiling of esophageal cancer: comparative analysis of Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma. Int J Cancer 2007;120(9):1914–1921. doi:10.1002/ijc.22501.

    Article  PubMed  CAS  Google Scholar 

  16. Ambros V. microRNAs: tiny regulators with great potential. Cell 2001;107:823–826. doi:10.1016/S0092-8674(01)00616-X.

    Article  PubMed  CAS  Google Scholar 

  17. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–854. doi:10.1016/0092-8674(93)90529-Y.

    Article  PubMed  CAS  Google Scholar 

  18. Wijnhoven BP, Michael MZ, Watson DI. MicroRNAs and cancer. Br J Surg 2007;94:23–30. doi:10.1002/bjs.5673.

    Article  PubMed  CAS  Google Scholar 

  19. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 2005;435:834–838. doi:10.1038/nature03702.

    Article  PubMed  CAS  Google Scholar 

  20. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433:769–773.

    Article  PubMed  CAS  Google Scholar 

  21. Watson DI, Wijnhoven BPL, Michael MZ, Mayne GC, Hussey DJ. MicroRNA expression profiles in Barrett’s oesophagus. ANZ J Surg 2007;77:A45. doi:10.1111/j.1445-2197.2007.04122_24.x.

    Article  Google Scholar 

  22. Watson DI, Wijnhoven BPL, Michael MZ, Mayne GC, Hussey DJ. MicroRNA expression profiles in Barrett’s oesophagus. ANZ J Surg 2007;77(Suppl 1):A45. doi:10.1111/j.1445-2197.2007.04122_24.x.

    Article  Google Scholar 

  23. Bozymski EM. Argon plasma coagulation for non-dysplastic Barrett’s epithelium: a hard act to follow. Am J Gastroenterol 2007;102:1128–1129. author reply 1129-30. doi:10.1111/j.1572-0241.2007.01180_3.x.

    Article  PubMed  Google Scholar 

  24. Manner H, May A, Faerber M, Rabenstein T, Ell C. Safety and efficacy of a new high power argon plasma coagulation system (hp-APC) in lesions of the upper gastrointestinal tract. Dig Liver Dis 2006;38:471–478. doi:10.1016/j.dld.2006.03.022.

    Article  PubMed  CAS  Google Scholar 

  25. Spechler SJ. Screening and surveillance for Barrett’s esophagus—an unresolved dilemma. Nat Clin Pract Gastroenterol Hepatol 2007;4:470–471. doi:10.1038/ncpgasthep0876.

    Article  PubMed  Google Scholar 

  26. Krishnadath KK, Wang KK, Taniguchi K, Sebo TJ, Buttar NS, Anderson MA, Lutzke LS, Liu W. Persistent genetic abnormalities in Barrett’s esophagus after photodynamic therapy. Gastroenterology 2000;119:624–630. doi:10.1053/gast.2000.18012.

    Article  PubMed  CAS  Google Scholar 

  27. Mork H, Scheurlen M, Al-Taie O, Zierer A, Kraus M, Schottker K, Jakob F, Kohrle J. Glutathione peroxidase isoforms as part of the local antioxidative defense system in normal and Barrett’s esophagus. Int J Cancer 2003;105:300–304. doi:10.1002/ijc.11087.

    Article  PubMed  CAS  Google Scholar 

  28. Peters FP, Krishnadath KK, Rygiel AM, Curvers WL, Rosmolen WD, Fockens P, Ten Kate FJ, van Baal JW, Bergman JJ. Stepwise radical endoscopic resection of the complete Barrett’s esophagus with early neoplasia successfully eradicates pre-existing genetic abnormalities. Am J Gastroenterol 2007;102:1853–1861. doi:10.1111/j.1572-0241.2007.01272.x.

    Article  PubMed  Google Scholar 

  29. Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M, Swanson SJ, Godfrey TE, Little VR. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 2008;135:255–260. discussion 260. doi:10.1016/j.jtcvs.2007.08.055.

    Article  PubMed  CAS  Google Scholar 

  30. Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003;1:882–891.

    PubMed  CAS  Google Scholar 

  31. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007;72:397–402. doi:10.1159/000113489.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded by a research project grant from the Cancer Council of South Australia. We thank the SouthPath anatomical pathology laboratory for assistance with tissue processing and preparation of histopathology slides.

Conflict of Interest

The authors have no conflict of interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijckmeester, W.A., Wijnhoven, B.P.L., Watson, D.I. et al. MicroRNA-143 and -205 Expression in Neosquamous Esophageal Epithelium Following Argon Plasma Ablation of Barrett’s Esophagus. J Gastrointest Surg 13, 846–853 (2009). https://doi.org/10.1007/s11605-009-0799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-009-0799-5

Keywords

Navigation