Skip to main content

Advertisement

Log in

Feasibility study for inducing the skeletal muscle fibrosis via irradiation using two mouse strains

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

Although the mechanism of onset and progression of radiation-induced fibrosis (RIF) has been studied, most studies to date have focused on pulmonary fibrosis. There are few studies on murine RIF in the skeletal muscle, and the pathogenic mechanism remains unclear. This pilot study aimed to evaluate the feasibility to create a murine model of RIF in the skeletal muscle and analyze strain differences in fibrosis sensitivity.

Materials and methods

Two mouse strains, C57BL/6 and C3H/He, were used. Their right hind limbs were irradiated at a dose of 25 Gy once a week for three fractions. Gastrocnemius muscles were collected at day 4, and weeks 2, 4, 8, 12, and 24 after the third irradiation and subjected to histopathological examination and immunoblotting.

Results

In C57BL/6 mice, chronic inflammation and an increased expression of transforming growth factor-β (TGF-β) and fibronectin were observed 2 weeks after irradiation. A significant increase in fibrosis was detected after 8 weeks. However, in C3H/He mice, the expression of TGF-β and fibronectin increased 8 weeks after irradiation, and fibrosis significantly increased after 12 weeks. Moreover, the degrees of inflammation and fibrosis were more remarkable in C57BL/6 mice than in C3H/He mice.

Conclusion

The onset and degree of fibrosis may be associated with the expression of TGF-β and fibronectin, and inflammation, in a strain-specific manner. Therefore, a murine model of RIF in the skeletal muscle could be created using the indicated method, suggesting that the C57BL/6 strain is more sensitive to fibrosis in the skeletal muscle, as well as the lung, than the C3H/He strain.

Secondary abstract

Radiation-induced fibrosis in the skeletal muscle could be detected in C57BL/6 and C3H/He mice, with C57BL/6 mice being more sensitive to fibrosis in the skeletal muscle than C3H/He mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6:702–13.

    Article  CAS  PubMed  Google Scholar 

  2. Zeman EM. The biological basis of radiation oncology. In: Gunderson LL, Tepper JE, editors. Clinical radiation oncology. 4th ed. Philadelphia: Elsevier Inc.; 2016. p. 2–40.

    Chapter  Google Scholar 

  3. Bentzen SM, Thames HD, Overgaard M. Latent-time estimation for late cutaneous and subcutaneous radiation reactions in a single-follow-up clinical study. Radiother Oncol. 1989;15:267–74.

    Article  CAS  PubMed  Google Scholar 

  4. Coomer A, Farese J, Milner R, Liptak J, Bacon N, Lurie D. Radiation therapy for canine appendicular osteosarcoma. Vet Comp Oncol. 2009;7:15–27.

    Article  CAS  PubMed  Google Scholar 

  5. Milano MT, Marks LB, Constine LS. Late effects after radiation. In: Gunderson LL, Tepper JE, editors. Clinical radiation oncology. 4th ed. Philadelphia: Elsevier Inc.; 2016. p. 253–74.

    Chapter  Google Scholar 

  6. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 2017;8:90579–604.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stubblefield MD. Clinical evaluation and management of radiation fibrosis syndrome. Phys Med Rehabil Clin N Am. 2017;28:89–100.

    Article  PubMed  Google Scholar 

  8. Wang B, Wei J, Meng L, Wang H, Qu C, Chen X, et al. Advances in pathogenic mechanisms and management of radiation-induced fibrosis. Biomed Pharmacother. 2020;121:109560.

    Article  CAS  PubMed  Google Scholar 

  9. Gallet P, Phulpin B, Merlin JL, Leroux A, Bravetti P, Mecellem H, et al. Long-term alterations of cytokines and growth factors expression in irradiated tissues and relation with histological severity scoring. PLoS ONE. 2011;6:e29399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubin P, Johnston CJ, Williams JP, Mcdonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 1995;33:99–109.

    Article  CAS  PubMed  Google Scholar 

  11. Barnes JL, Gorin Y. Myofibroblast differentiation during fibrosis: role of NAD(P) H oxidases. Kidney Int. 2011;79:944–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Richter K, Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res. 2016;365:591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ismaeel A, Kim JS, Kirk JS, Smith RS, Bohannon WT, Koutakis P. Role of transforming growth factor-β in skeletal muscle fibrosis: a review. Int J Mol Sci. 2019;20:2446.

    Article  PubMed Central  CAS  Google Scholar 

  14. Chithra P, Sajithlal GB, Chandrakasan G. Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. J Ethnopharmacol. 1998;59:179–86.

    Article  CAS  PubMed  Google Scholar 

  15. Orphanides C, Fine LG, Norman JT. Hypoxia stimulates proximal tubular cell matrix production via a TGF-β1-independent mechanism. Kidney Int. 1997;52:637–47.

    Article  CAS  PubMed  Google Scholar 

  16. Vujaskovic Z, Anscher MS, Feng QF, Rabbani ZN, Amin K, Sanulski T, et al. Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys. 2001;50:851–5.

    Article  CAS  PubMed  Google Scholar 

  17. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293:293–7.

    Article  CAS  PubMed  Google Scholar 

  18. Valle-Tenney R, Rebolledo D, Acuña MJ, Brandan E. HIF-hypoxia signaling in skeletal muscle physiology and fibrosis. J Cell Commun Signal. 2020;14:147–58.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Valle-Tenney R, Rebolledo DL, Lipson KE, Brandan E. Role of hypoxia in skeletal muscle fibrosis: synergism between hypoxia and TGF-beta signaling upregulates CCN2/CTGF expression specifically in muscle fibers. Matrix Biol. 2020;87:48–65.

    Article  CAS  PubMed  Google Scholar 

  20. Haroon ZA, Raleigh JA, Greenberg CS, Dewhirst MW. Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann Surg. 2000;231:137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K, et al. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Ren Physiol. 2008;295:F1023–9.

    Article  CAS  Google Scholar 

  23. Zavadil J, Böttinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.

    Article  CAS  PubMed  Google Scholar 

  24. Okada H, Danoff TM, Kalluri R, Neilson EG. Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol. 1997;273:F563–74.

    Article  CAS  PubMed  Google Scholar 

  25. Johnston CJ, Williams JP, Okunieff P, Finkelstein JN. Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families. Radiat Res. 2002;157:256–65.

    Article  CAS  PubMed  Google Scholar 

  26. Franko AJ, Sharplin J, Ward WF, Hinz JM. The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung. Radiat Res. 1991;126:349–56.

    Article  CAS  PubMed  Google Scholar 

  27. Kalash R, Berhane H, Au J, Rhieu BH, Epperly MW, Goff J, et al. Differences in irradiated lung gene transcription between fibrosis-prone C57BL/6NHsd and fibrosis-resistant C3H/HeNHsd mice. In Vivo. 2014;28:147–71.

    CAS  PubMed  Google Scholar 

  28. Johnston CJ, Piedboeuf B, Baggs R, Rubin P, Finkelstein JN. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis. Radiat Res. 1995;142:197–203.

    Article  CAS  PubMed  Google Scholar 

  29. Iwakawa M, Noda S, Ohta T, Ohira C, Lee R, Goto M, et al. Different radiation susceptibility among five strains of mice detected by a skin reaction. J Radiat Res. 2003;44:7–13.

    Article  PubMed  Google Scholar 

  30. Bianchi M, Delic JI, Hurtado-de-Catalfo G, Hendry JH. Strain differences in the radiosensitivity of mouse spermatogonia. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;48:579–88.

    Article  CAS  PubMed  Google Scholar 

  31. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  32. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transp. 2013;48:452–8.

    Article  CAS  Google Scholar 

  33. Zhou Y, Sheng X, Deng F, Wang H, Shen L, Zeng Y, et al. Radiation-induced muscle fibrosis rat model: establishment and valuation. Radiat Oncol. 2018;13:160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sun W, Ni X, Sun S, Cai L, Yu J, Wang J, et al. Adipose-derived stem cells alleviate radiation-induced muscular fibrosis by suppressing the expression of TGF-β1. Stem Cells Int. 2016;2016:5638204.

    PubMed  Google Scholar 

  35. Dimitrievich GS, Fischer-Dzoga K, Griem ML. Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat Res. 1984;99:511–35.

    Article  CAS  PubMed  Google Scholar 

  36. Judge JL, Lacy SH, Ku WY, Owens KM, Hernady E, Thatcher TH, et al. The lactate dehydrogenase inhibitor gossypol inhibits radiation-induced pulmonary fibrosis. Radiat Res. 2017;188:35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rabbani ZN, Mi J, Zhang Y, Delong M, Jackson IL, Fleckenstein K, et al. Hypoxia inducible factor 1α signaling in fractionated radiation-induced lung injury: role of oxidative stress and tissue hypoxia. Radiat Res. 2010;173:165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Rebouças JS, Batinic-Haberle I, et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med. 2010;48:1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drouin G, Couture V, Lauzon MA, Balg F, Faucheux N, Grenier G. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet Muscle. 2019;9:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1:21.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bersini S, Gilardi M, Mora M, Krol S, Arrigoni C, Candrian C, et al. Tackling muscle fibrosis: from molecular mechanisms to next generation engineered models to predict drug delivery. Adv Drug Deliv Rev. 2018;129:64–77.

    Article  CAS  PubMed  Google Scholar 

  42. Rube CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, et al. Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys. 2000;47:1033–42.

    Article  CAS  PubMed  Google Scholar 

  43. Mahdy MAA. Skeletal muscle fibrosis: an overview. Cell Tissue Res. 2019;375:575–88.

    Article  PubMed  Google Scholar 

  44. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg. 2002;84:822–32.

    Article  PubMed  Google Scholar 

Download references

Funding

None declared.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TM and RI; methodology: YM, RY and RI; formal analysis and investigation: YM, RY and RI; writing—original draft preparation: YM; writing—review and editing: TM and RI; resources: TM and RI; supervision: RI.

Corresponding author

Correspondence to Ryota Iwasaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

All experiments were approved by the Gifu University Animal Experiment Committee and performed in accordance with the institutional and national guidelines for the care and use of laboratory animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakoshi, Y., Yoshikawa, R., Mori, T. et al. Feasibility study for inducing the skeletal muscle fibrosis via irradiation using two mouse strains. Jpn J Radiol 40, 466–475 (2022). https://doi.org/10.1007/s11604-021-01219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-021-01219-0

Keywords

Navigation