Skip to main content
Log in

Whole-tumor histogram analysis of DWI and QSI for differentiating between meningioma and schwannoma: a pilot study

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether whole-tumor histogram analyses of diffusivity measurements derived from q-space imaging (QSI) improves the differentiation between meningioma and schwannoma.

Materials and methods

Fifteen extra-axial tumors (11 meningiomas and 4 schwannomas) with MR examinations from April 2011 to May 2013 were included. Three-dimensional regions of interest (ROI) encompassed the whole tumor, including cystic areas. Histogram analyses of mean displacement (MD) derived from QSI and apparent diffusion coefficient (ADC) for the ROI were performed at mean, the five percentiles of MDn and ADCn (n = 5, 25, 50, 75, 95th), kurtosis, and skewness. To determine the diagnostic ability of MDn and ADCn, we also compared the area under the curve (AUC) on receiver operating characteristic (ROC) analysis.

Results

Histogram analyses revealed significant differences between meningioma and schwannoma in MD75, ADC25, ADC50, ADC75, and kurtosis of ADC. The ROC analysis of kurtosis of ADC and MD75 resulted in an AUC of 1.0 and 0.96, respectively. There were no significant differences between the AUC of MD75 and that of kurtosis of ADC (p = 0.41).

Conclusion

The histogram analyses of MD and ADC derived from QSI were both equally useful in differentiating between intracranial meningioma and schwannoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Voss NF, Vrionis FD, Heilman CB, Robertson JH. Meningiomas of the cerebellopontine angle. Surg Neurol. 2000;53:439–47.

    Article  CAS  Google Scholar 

  2. Sweeney AD, Carlson ML, Ehtesham M, Thompson RC, Haynes DS. Surgical approaches for vestibular schwannoma. Curr Otorhinolaryngol Rep. 2014;2:256–64.

    Article  Google Scholar 

  3. Yoshino M, Kin T, Nakatomi H, Oyama H, Saito N. Presurgical planning of feeder resection with realistic three-dimensional virtual operation field in patient with cerebellopontine angle meningioma. Acta Neurochir. 2013;155:1391–9.

    Article  Google Scholar 

  4. Agarwal V, Babu R, Grier J, Adogwa O, Back A, Friedman AH, et al. Cerebellopontine angle meningiomas: postoperative outcomes in a modern cohort. Neurosurg Focus. 2013;35:E10.

    Article  Google Scholar 

  5. Bonneville F, Savatovsky J, Chiras J. Imaging of cerebellopontine angle lesions: an update Part 1: enhancing extra-axial lesions. Eur Radiol. 2007;17:2472–82.

    Article  Google Scholar 

  6. Drevelegas A. Extra-axial brain tumors. Eur Radiol. 2005;15:453–67.

    Article  Google Scholar 

  7. Asaoka K, Barrs DM, Sampson JH, McElveen JT, Tucci DL, Fukushima T. Intracanalicular meningioma mimicking vestibular schwannoma. Am J Neuroradiol. 2002;23:1493–6.

    PubMed  Google Scholar 

  8. Guermazi A, Lafitte F, Miaux Y, Adem C, Bonneville J-F, Chiras J. The dural tail sign–beyond meningioma. Clin Radiol. 2005;60:171–88.

    Article  CAS  Google Scholar 

  9. Hallinan JTPD, Hegde AN, Lim WEH. Dilemmas and diagnostic difficulties in meningioma. Clin Radiol. 2013;68:837–44.

    Article  CAS  Google Scholar 

  10. Yamasaki F, Kurisu K, Satoh K, Arita K, Sugiyama K, Ohtaki M, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology. 2005;235:985–91.

    Article  Google Scholar 

  11. Pavlisa G, Rados M, Pazanin L, Padovan RS, Ozretic D, Pavlisa G. Characteristics of typical and atypical meningiomas on ADC maps with respect to schwannomas. J Clin Imaging. 2008;32:22–7.

    Article  Google Scholar 

  12. Xu X-Q, Li Y, Hong X-N, Wu F-Y, Shi H-B. Radiological indeterminate vestibular schwannoma and meningioma in cerebellopontine angle area: differentiating using whole-tumor histogram analysis of apparent diffusion coefficient. Int. J. Neurosci. 2017;127:183–90.

    Article  Google Scholar 

  13. Cohen Y, Assaf Y. High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues - a technical review. NMR Biomed. 2002;15:516–42.

    Article  Google Scholar 

  14. Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci. 2012;11:221–33.

    Article  Google Scholar 

  15. Assaf Y, Ben-Bashat D, Chapman J, Peled S, Biton IE, Kafri M, et al. High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med. 2002;47:115–26.

    Article  CAS  Google Scholar 

  16. Hori M, Motosugi U, Fatima Z, Kumagai H, Ikenaga S, Ishigame K, et al. A comparison of mean displacement values using high b-value Q-space diffusion-weighted MRI with conventional apparent diffusion coefficients in patients with stroke. Acad Radiol. 2011;18:837–41.

    Article  Google Scholar 

  17. Mayzel-Oreg O, Assaf Y, Gigi A, Ben-Bashat D, Verchovsky R, Mordohovitch M, et al. High b-value diffusion imaging of dementia: application to vascular dementia and alzheimer disease. J Neurol Sci. 2007;257:105–13.

    Article  Google Scholar 

  18. Yamada K, Sakai K, Akazawa K, Sugimoto N, Nakagawa M, Mizuno T. Detection of early neuronal damage in CADASIL patients by q-space MR imaging. Neuroradiology. 2013;55:283–90.

    Article  Google Scholar 

  19. Taylor EN, Ding Y, Zhu S, Cheah E, Alexander P, Lin L, et al. Association between tumor architecture derived from generalized Q-space MRI and survival in glioblastoma. Oncotarget. 2017;8:41815–266.

    PubMed  PubMed Central  Google Scholar 

  20. Fatima Z, Motosugi U, Waqar AB, Hori M, Ishigame K, Oishi N, et al. Associations among q-space MRI, diffusion-weighted MRI and histopathological parameters in meningiomas. Eur Radiol. 2013;23:2258–63.

    Article  Google Scholar 

  21. Hori M, Motosug U, Fatima Z, Ishigame K, Araki T. Mean displacement map of spine and spinal cord disorders using high b-value q-space imaging-feasibility study. Acta Radiol. 2011;52:1155–8.

    Article  Google Scholar 

  22. Peeters F, Rommel D, Abarca-Quinones J, Grégoire V, Duprez T. Early (72-Hour) detection of radiotherapy-induced changes in an experimental tumor model using diffusion-weighted imaging, diffusion tensor imaging, and Q-space imaging parameters: a comparative study. J Magn Reson Imaging. 2011;35:409–17.

    Article  Google Scholar 

  23. Just N. Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer. 2014;111:2205–13.

    Article  CAS  Google Scholar 

  24. Law M, Young R, Babb J, Pollack E, Johnson G. Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. Am J Neuroradiol. 2007;28:761–6.

    CAS  PubMed  Google Scholar 

  25. Assaf Y, Mayzel-Oreg O, Gigi A, Ben-Bashat D, Mordohovitch M, Verchovsky R, et al. High b value q-space-analyzed diffusion MRI in vascular dementia: a preliminary study. J Neurol Sci. 2002;203–204:235–9.

    Article  Google Scholar 

  26. Choi YJ, Lee JH, Kim HO, Kim DY, Yoon RG, Cho SH, et al. Histogram analysis of apparent diffusion coefficients for occult tonsil cancer in patients with cervical nodal metastasis from an unknown primary site at presentation. Radiology. 2016;278:146–55.

    Article  Google Scholar 

  27. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med. 2013;4:627–35.

    Google Scholar 

  28. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  Google Scholar 

  29. Kanda Y. Investigation of the freely available easy-to-use software for medical statistics. Bone Marrow Transpl. 2012;48:452–8.

    Article  Google Scholar 

  30. Wagner MW, Narayan AK, Bosemani T, Huisman TAGM, Poretti A. Histogram analysis of diffusion tensor imaging parameters in pediatric cerebellar tumors. J Neuroimaging. 2016;26:360–5.

    Article  Google Scholar 

  31. Choi YS, Ahn SS, Kim DW, Chang JH, Kang S-G, Kim EH, et al. Incremental prognostic value of ADC histogram analysis over MGMT promoter methylation status in patients with glioblastoma. Radiology. 2016;281(1):175–84.

    Article  Google Scholar 

  32. Kang Y, Choi SH, Kim Y-J, Kim KG, Sohn C-H, Kim J-H, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR Imaging—correlation with tumor grade. Radiology. 2011;261:882–90.

    Article  Google Scholar 

  33. Sakai K, Yamada K, Akazawa K, et al. Can we shorten the q-space imaging to make it clinically feasible? Jpn J Radiol. 2016;35:16–24. https://doi.org/10.1007/s11604-016-0593-8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sakai.

Ethics declarations

Conflict of interest

Kei Yamada received research grants from Mediphysics, Doctor Net, FUJIFILM, and Daiichi Sankyo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagano, H., Sakai, K., Tazoe, J. et al. Whole-tumor histogram analysis of DWI and QSI for differentiating between meningioma and schwannoma: a pilot study. Jpn J Radiol 37, 694–700 (2019). https://doi.org/10.1007/s11604-019-00862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-019-00862-y

Keywords

Navigation