Skip to main content
Log in

Brain-core temperature of patients before and after orthotopic liver transplantation assessed by DWI thermometry

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess brain-core temperature of end-stage liver disease patients undergoing orthotopic liver transplantation (OLT) using a temperature measurement technique based on the apparent diffusion coefficient of the cerebrospinal fluid in the lateral ventricles.

Materials and methods

The study group was composed of 19 patients with a model for end-stage liver disease (MELD) score of 23.7 who underwent MR imaging before and after OLT. MR imaging studies were performed with a 1.5T MR scanner. Brain-core temperature (T: °C) was calculated using the following equation from the apparent diffusion coefficient (D) of the cerebrospinal fluid in the lateral ventricles: \(T = {{2256.74} \mathord{\left/ {\vphantom {{2256.74} {\ln \left( {4.39221/D} \right)}}} \right. \kern-0pt} {\ln \left( {4.39221/D} \right)}}{-}273.15\) measured with a DWI sequence (b value 1000 s/mm2). We compared brain-core temperature of all patients before and after OLT.

Results

Brain-core temperature measurements were successfully taken in all patients before and after OLT. The measured brain-core temperature mean ± standard deviation was 38.67 ± 1.76 °C before OLT and 38.60 ± 0.99 °C after OLT, showing no significant difference (P = 0.643).

Conclusions

Brain-core temperature was stable in patients undergoing OLT. DWI thermometry may provide a supplementary brain biomarker to confirm that cerebral blood flow and metabolism are stable in patients undergoing OLT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASL:

Arterial spin labeling

CBF:

Cerebral blood flow

CMRO2 :

Cerebral metabolic rate for oxygen

CSF:

Cerebrospinal fluid

DWI:

Diffusion-weighted imaging

FLAIR:

Fluid-attenuated inversion recovery

FSE:

Fast-spin-echo

FOV:

Field of view

LV:

Lateral ventricles

MELD:

Model for end-stage liver disease

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

OTL:

Orthotopic liver transplantation

PWI:

Perfusion-weighted imaging

References

  1. Madoff DC, Wallace MJ, Ahrar K, Saxon RR. TIPS-related hepatic encephalopathy: management options with novel endovascular techniques. Radiographics. 2004;24:21–36.

    Article  PubMed  Google Scholar 

  2. Ardizzone G, Arrigo A, Schellino MM, et al. Neurological complications of liver cirrhosis and orthotopic liver transplant. Transplant Proc. 2006;38:789–92.

    Article  CAS  PubMed  Google Scholar 

  3. Ardizzone G, Arrigo A, Panaro F, et al. Modifications of cerebral vascular resistance and autoregulation after graft reperfusion during human orthotopic liver transplantation. Transplant Proc. 2004;36:1473–8.

    Article  CAS  PubMed  Google Scholar 

  4. Herynek V, Wagnerová D, Hejlová I, et al. Changes in the brain during long-term follow-up after liver transplantation. J Magn Reson Imaging. 2012;35(6):1332–7.

    Article  PubMed  Google Scholar 

  5. Naegele T, Grodd W, Viebahn R, et al. MR imaging and (1)H spectroscopy of brain metabolites in hepatic encephalopathy: time-course of renormalization after liver transplantation. Radiology. 2000;216:683–91.

    Article  CAS  PubMed  Google Scholar 

  6. Mcilvoy L. Comparison of brain temperature to core temperature: a review of the literature. J Neurosci Nurs. 2004;36:23–31.

    Article  PubMed  Google Scholar 

  7. Sumida K, Sato N, Ota M, et al. Intraventricular temperature measured by diffusion-weighted imaging compared with brain parenchymal temperature measured by MRS in vivo. NMR Biomed. 2016;29:890–5.

    Article  PubMed  Google Scholar 

  8. Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–70.

    Article  CAS  PubMed  Google Scholar 

  9. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time–dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  CAS  Google Scholar 

  10. Mills R. Self-diffusion in normal and heavy water in the range 1-45.deg. J Phys Chem. 1973;77:685–8.

    Article  CAS  Google Scholar 

  11. Kozak LR, Bango M, Szabo M, Rudas G, Vidnyanszky Z, Nagy Z. Using diffusion MRI for measuring the temperature of cerebrospinal fluid within the lateral ventricles. Acta Paediatr. 2010;99:237–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakai K, Yamada K, Sugimoto N. Calculation methods for ventricular diffusion-weighted imaging thermometry: phantom and volunteer studies. NMR Biomed. 2012;25:340–6.

    Article  PubMed  Google Scholar 

  13. Sakai K, Yamada K, Sugimoto N. Automated temperature calculation method for DWI-thermometry: the usefulness of LV probability map on healthy subjects. In: Conf Proc IEEE Eng Med Biol Soc 2013, pp 499–502.

  14. Aggarwal S, Obrist W, Yonas H, et al. Cerebral hemodynamic and metabolic profiles in fulminant hepatic failure: relationship to outcome. Liver Transpl. 2005;11:1353–60.

    Article  PubMed  Google Scholar 

  15. Zivković SA. Neurologic complications after liver transplantation. World J Hepatol. 2013;5:409–16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zivković SA, Abdel-Hamid H. Neurologic manifestations of transplant complications. Neurol Clin. 2010;28:235–51.

    Article  PubMed  Google Scholar 

  17. Strauss G, Hansen BA, Kirkegaard P, Rasmussen A, Hjortrup A, Larsen FS. Liver function, cerebral blood flow autoregulation, and hepatic encephalopathy in fulminant hepatic failure. Hepatology. 1997;25:837–9.

    Article  CAS  PubMed  Google Scholar 

  18. Pere P, Höckerstedt K, Isoniemi H, Lindgren L. Cerebral blood flow and oxygenation in liver transplantation for acute or chronic hepatic disease without venovenous bypass. Liver Transpl. 2000;6:471–9.

    Article  CAS  PubMed  Google Scholar 

  19. Philips BJ, Armstrong IR, Pollock A, Lee A. Cerebral blood flow and metabolism in patients with chronic liver disease undergoing orthotopic liver transplantation. Hepatology. 1998;27:369–76.

    Article  CAS  PubMed  Google Scholar 

  20. Larsen FS, Ejlersen E, Strauss G, et al. Cerebrovascular metabolic autoregulation is impaired during liver transplantation. Transplantation. 1999;68:1472–6.

    Article  CAS  PubMed  Google Scholar 

  21. Skak C, Rasmussen A, Kirkegaard P, Secher NH. Cerebral oxygen saturation and blood flow during liver transplantation. Anesth Analg. 1997;84:730–3.

    Article  CAS  PubMed  Google Scholar 

  22. Strauss G, Hansen BA, Kirkegaard P, Rasmussen A, Hjortrup A, Larsen FS. Liver function, cerebral blood flow autoregulation, and hepatic encephalopathy in fulminant hepatic failure. Hepatology. 1997;25:837–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ardizzone G, Arrigo A, Panaro F, et al. Cerebral hemodynamic and metabolic changes in patients with fulminant hepatic failure during liver transplantation. Transplant Proc. 2004;36:3060–4.

    Article  CAS  PubMed  Google Scholar 

  24. Bertolizio G, Mason L, Bissonnette B. Brain temperature: heat production, elimination and clinical relevance. Paediatr Anaesth. 2011;21:347–58.

    Article  PubMed  Google Scholar 

  25. Kuriyama N, Yamada K, Sakai K, et al. Ventricular temperatures in idiopathic normal pressure hydrocephalus (iNPH) measured with DWI-based MR thermometry. Magn Reson Med Sci. 2015;14:305–12.

    Article  CAS  PubMed  Google Scholar 

  26. Yamada K, Sakai K, Akazawa K, et al. Moyamoya patients exhibit higher brain temperatures than normal controls. NeuroReport. 2010;21:851–5.

    Article  PubMed  Google Scholar 

  27. Sumida K, Sato N, Ota M, et al. Intraventricular cerebrospinal fluid temperature analysis using MR diffusion-weighted imaging thermometry in Parkinson’s disease patients, multiple system atrophy patients, and healthy subjects. Brain Behav. 2015;5:e00340.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ota M, Sato N, Sakai K, et al. Altered coupling of regional cerebral blood flow and brain temperature in schizophrenia compared with bipolar disorder and healthy subjects. J Cereb Blood Flow Metab. 2014;34:1868–72.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sparacia G, Sakai K, Yamada K, et al. Assessment of brain core temperature using MR DWI-thermometry in Alzheimer disease patients compared to healthy subjects. Jpn J Radiol. 2017;35:168–71.

    Article  PubMed  Google Scholar 

  30. Tazoe J, Yamada K, Sakai K, Akazawa K, Mineura K. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry. Neuroradiology. 2014;56:809–15.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sai A, Shimono T, Sakai K, et al. Diffusion-weighted imaging thermometry in multiple sclerosis. J Magn Reson Imaging. 2014;40:649–54.

    Article  PubMed  Google Scholar 

  32. Tsukamoto T, Shimono T, Sai A, et al. Assessment of brain temperatures during different phases of the menstrual cycle using diffusion-weighted imaging thermometry. Jpn J Radiol. 2016;34:277–83.

    Article  PubMed  Google Scholar 

  33. Sakai K, Yamada K, Mori S, Sugimoto N, Nishimura T. Age-dependent brain temperature decline assessed by diffusion-weighted imaging thermometry. NMR Biomed. 2011;24:1063–7.

    Article  PubMed  Google Scholar 

  34. Hasan KM, Moeller FG, Narayana PA. DTI-based segmentation and quantification of human brain lateral ventricular CSF volumetry and mean diffusivity: validation, age, gender effects and biophysical implications. Magn Reson Imaging. 2014;32:405–12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fleischer CC, Wu J, Qiu D, et al. The brain thermal response as a potential neuroimaging biomarker of cerebrovascular impairment. AJNR Am J Neuroradiol. 2017;38:2044–51.

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Wang B, Normoyle KP, et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci. 2014;8:307.

    PubMed  PubMed Central  Google Scholar 

  37. Sukstanskii AL, Yablonskiy DA. An analytical model of temperature regulation in human head. J Therm Biol. 2004;29:583–7.

    Article  Google Scholar 

  38. Long LL, Li XR, Huang ZK, Jiang YM, Fu SX, Zheng W. Relationship between changes in brain MRI and (1)H-MRS, severity of chronic liver damage, and recovery after liver transplantation. Exp Biol Med (Maywood). 2009;234:1075–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schulz GJ, Coelho JC, Matias JE, Campos AC, Schulz DD, Bertoldi GA. Cerebral magnetic resonance spectroscopy in patients with hepatic encephalopathy: analysis before and after liver transplantation. Rev Assoc Med Bras. 1992;2009(55):35–9.

    Google Scholar 

  40. Thomas MA, Huda A, Guze B, et al. Cerebral 1H MR spectroscopy and neuropsychologic status of patients with hepatic encephalopathy. AJR Am J Roentgenol. 1998;171:1123–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Warren Blumberg, science editor at ISMETT, for his help in revising the manuscript.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianvincenzo Sparacia.

Ethics declarations

Ethics standards

Our retrospective cohort study was reviewed and approved by the Institutional Research Review Board (IRRB) of our institution, and informed consent form was waived; however, informed written consent to the MR was obtained from all patients. We declare that all human studies have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sparacia, G., Cannella, R., Lo Re, V. et al. Brain-core temperature of patients before and after orthotopic liver transplantation assessed by DWI thermometry. Jpn J Radiol 36, 324–330 (2018). https://doi.org/10.1007/s11604-018-0729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0729-0

Keywords

Navigation