Skip to main content

Advertisement

Log in

Semiquantitative assessment of optic nerve injury using manganese-enhanced MRI

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the capability of manganese (Mn2+)-enhanced MRI (MEMRI) in a continuously semiquantitative assessment of rat optic nerve (ON) injury.

Methods

Forty rats were divided into three groups: (I) a control group that was submitted to MEMRI or to fluorescent labeling of retinal ganglion cells (RGCs) (n = 10); (II) an ON injury group that was submitted to MEMRI (n = 15); (III) an ON injury group that was submitted to fluorescent labeling of RGCs (n = 15). Groups II and III were examined at 3, 7, and 14 days post-lesion (dpl), when the contrast-to-noise ratio (CNR) of the retina and ON was measured on MEMRI images and the RGCs were counted by fluorescence microscopy and compared between the groups.

Results

In the control group, the intact visual pathway from the retina to the contralateral superior colliculus was visualized by MEMRI. In group II, continuous Mn2+ enhancement was seen from the retina to the lesion site of the optic nerves at 3, 7, and 14 dpl. However, no Mn2+ enhancement was observed distal to the lesion site at those time points. The observed Mn2+ enhancement proximal to the ON lesion site declined between 7 and 14 dpl. The decrease in Mn2+-enhanced signal intensity at these sites at 7 and 14 dpl when compared to that at 3 dpl was significant (P < 0.05). The RGC density dropped by 6.84, 45.31, and 72.36 % at 3, 7, and 14 dpl, respectively.

Conclusion

MEMRI can be used to evaluate the structural changes after optic nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Townsend KA, Wollstein G, Schuman JS. Clinical application of MRI in ophthalmology. NMR Biomed. 2008;21:997–1002.

  2. Fanea L, Fagan AJ. Review: magnetic resonance imaging techniques in ophthalmology. Mol Vis. 2012;18:2538–60.

    PubMed  PubMed Central  Google Scholar 

  3. Feng Y, Luo L, Ma Z, Sun X, Hu Y. In vivo detection of severity of optic nerve crush using manganese-enhanced magnetic resonance imaging in rats. Chin Med J (Engl). 2014;127:522–7.

    Google Scholar 

  4. Chan KC, Fu QL, Hui ES, So KF, Wu EX. Evaluation of the retina and optic nerve in a rat model of chronic glaucoma using in vivo manganese-enhanced magnetic resonance imaging. Neuroimage. 2008;40:1166–74.

    Article  PubMed  Google Scholar 

  5. Thuen M, Singstad TE, Pedersen TB, Haraldseth O, Berry M, Sandvig A, et al. Manganese-enhanced MRI of the optic visual pathway and optic nerve injury in adult rats. J Magn Reson Imaging. 2005;22:492–500.

    Article  PubMed  Google Scholar 

  6. Chan KC, Cheung MM, Xing KK, Zhou IY, Chow AM, Lau C, et al. In vivo MRI study of the visual system in normal, developing and injured rodent brains. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5689–92.

    PubMed  Google Scholar 

  7. Ryu S, Brown SL, Kolozsvary A, Ewing JR, Kim JH. Noninvasive detection of radiation-induced optic neuropathy by manganese-enhanced MRI. Radiat Res. 2002;157:500–5.

    Article  CAS  PubMed  Google Scholar 

  8. Bissig D, Berkowitz BA. Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats. Neuroimage. 2009;44:627–35.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chan KC, Li J, Kau P, Zhou IY, Cheung MM, Lau C, et al. In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging. Neuroimage. 2011;54:389–95.

    Article  PubMed  Google Scholar 

  10. Narita K, Kawasaki F, Kita H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res. 1990;510:289–95.

    Article  CAS  PubMed  Google Scholar 

  11. Inoue T, Majid T, Pautler RG. Manganese enhanced MRI (MEMRI): neurophysiological applications. Rev Neurosci. 2011;22:675–94.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liao CD, Zhang F, Guo RM, Zhong XM, Zhu J, Wen XH, et al. Peripheral nerve repair: monitoring by using gadofluorine M-enhanced MR imaging with chitosan nerve conduits with cultured mesenchymal stem cells in rat model of neurotmesis. Radiology. 2012;262:161–71.

    Article  PubMed  Google Scholar 

  13. Sandvig I, Sandvig A. Using manganese-enhanced MRI to assess optic nerve regeneration. Methods Mol Biol. 2014;1162:233–49.

    Article  PubMed  Google Scholar 

  14. Nazir SA, Westfall CT, Chacko JG, Phillips PH, Stack BC Jr. Visual recovery after direct traumatic optic neuropathy. Am J Otolaryngol. 2010;31:193–4.

    Article  PubMed  Google Scholar 

  15. Huang TL, Huang SP, Chang CH, Lin KH, Sheu MM, Tsai RK. Factors influencing the retrograde labeling of retinal ganglion cells with fluorogold in an animal optic nerve crush model. Ophthalmic Res. 2014;51:173–8.

    Article  CAS  PubMed  Google Scholar 

  16. Isenmann S, Kretz A, Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res. 2003;22:483–543.

    Article  CAS  PubMed  Google Scholar 

  17. Berry M, Carlile J, Hunter A, Tsang W, Rosenstiel P, Sievers J. Optic nerve regeneration after intravitreal peripheral nerve implants: trajectories of axons regrowing through the optic chiasm into the optic tracts. J Neurocytol. 1999;28:721–41.

    Article  CAS  PubMed  Google Scholar 

  18. Normandin L, Hazell AS. Manganese neurotoxicity: an update of pathophysiologic mechanisms. Metab Brain Dis. 2002;17:375–87.

    Article  CAS  PubMed  Google Scholar 

  19. Santamaria AB. Manganese exposure, essentiality & toxicity. Indian J Med Res. 2008;128:484–500.

    CAS  PubMed  Google Scholar 

  20. Thuen M, Berry M, Pedersen TB, Goa PE, Summerfield M, Haraldseth O, et al. Manganese-enhanced MRI of the rat visual pathway: acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn(2+). J Magn Reson Imaging. 2008;28:855–65.

    Article  PubMed  Google Scholar 

  21. Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage. 2002;16:441–8.

    Article  PubMed  Google Scholar 

  22. Serrano F, Deshazer M, Smith KD, Ananta JS, Wilson LJ, Pautler RG. Assessing transneuronal dysfunction utilizing manganese-enhanced MRI (MEMRI). Magn Reson Med. 2008;60:169–75.

    Article  PubMed  Google Scholar 

  23. Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med. 1998;40:740–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tjalve H, Mejare C, Borg-Neczak K. Uptake and transport of manganese in primary and secondary olfactory neurones in pike. Pharmacol Toxicol. 1995;77:23–31.

    Article  CAS  PubMed  Google Scholar 

  25. Grafstein B, Forman DS. Intracellular transport in neurons. Physiol Rev. 1980;60:1167–283.

    CAS  PubMed  Google Scholar 

  26. Sloot WN, Gramsbergen JB. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res. 1994;657:124–32.

    Article  CAS  PubMed  Google Scholar 

  27. Lin TH, Kim JH, Perez-Torres C, Chiang CW, Trinkaus K, Cross AH, et al. Axonal transport rate decreased at the onset of optic neuritis in EAE mice. Neuroimage. 2014;100:244–53.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pautler RG, Mongeau R, Jacobs RE. In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med. 2003;50:33–9.

    Article  PubMed  Google Scholar 

  29. Wessendorf MW. Fluoro-Gold: composition, and mechanism of uptake. Brain Res. 1991;553:135–48.

    Article  CAS  PubMed  Google Scholar 

  30. Thuen M, Olsen O, Berry M, Pedersen TB, Kristoffersen A, Haraldseth O, et al. Combination of Mn(2+)-enhanced and diffusion tensor MR imaging gives complementary information about injury and regeneration in the adult rat optic nerve. J Magn Reson Imaging. 2009;29:39–51.

    Article  PubMed  Google Scholar 

  31. Heumann R. Regulation of the synthesis of nerve growth factor. J Exp Biol. 1987;132:133–50.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tao Liu and Zhuqin Li for their help with optic nerve histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengde Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, Q., Wang, M. et al. Semiquantitative assessment of optic nerve injury using manganese-enhanced MRI. Jpn J Radiol 34, 356–365 (2016). https://doi.org/10.1007/s11604-016-0533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-016-0533-7

Keywords

Navigation