Skip to main content

Advertisement

Log in

Feasibility study of a breast density measurement within a direct photon-counting mammography scanner system

  • Technical Note
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the clinical feasibility of breast density measurements by a new application within a direct photon-counting mammography scanner system.

Materials and methods

A retrospective study of consecutive women who underwent mammography using a direct photon-counting mammography scanner system (MicroDose mammography SI; Philips Digital Mammography Sweden AB) was performed at the authors’ institution between September and December 2013. Quantitative volumetric glandularity measurements were performed automatically for each acquired mammographic image using an application (Breast Density Measurement; Philips Digital Mammography Sweden AB). The quantitative volumetric glandularity of each breast was defined as the average values for the mediolateral oblique (MLO) and craniocaudal (CC) mammogram views.

Results

Of the 44 women who underwent bilateral mammogram acquisitions, the breast density measurements were performed successfully in 40 patients (90.9 %). A very good to excellent correlation in the quantitative breast density measurements acquired from the MLO and CC images was obtained in the 40 evaluable patients (R = 0.99).

Conclusion

The calculated volumetric glandularity using this new application should correspond well with the true volumetric density of each breast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–36.

    Article  PubMed  CAS  Google Scholar 

  2. Ursin G, Ma H, Wu AH, Bernstein L, Salane M, Parisky YR, et al. Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomark Prev. 2003;12:332–8.

    Google Scholar 

  3. Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, et al. Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 1995;87:1622–9.

    Article  PubMed  CAS  Google Scholar 

  4. Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst. 1995;87:670–5.

    Article  PubMed  CAS  Google Scholar 

  5. Wolfe JN, Saftlas AF, Salane M. Mammographic parenchymal patterns and quantitative evaluation of mammographic densities: a case–control study. Am J Roentgenol. 1987;148:1087–92.

    Article  CAS  Google Scholar 

  6. Byrne C, Schairer C, Brinton LA, Wolfe J, Parekh N, Salane M, et al. Effects of mammographic density and benign breast disease on breast cancer risk (United States). Cancer Causes Control. 2001;12:103–10.

    Article  PubMed  CAS  Google Scholar 

  7. Harvey JA, Bovbjerg VE. Quantitative assessment of mammographic breast density: relationship with breast cancer risk. Radiology. 2004;230:29–41.

    Article  PubMed  Google Scholar 

  8. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6:798–808.

    Article  PubMed  Google Scholar 

  9. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev. 2006;15:1159–69.

    Article  Google Scholar 

  10. Nagata C, Matsubara T, Fujita H, Nagao Y, Shibuya C, Kashiki Y, et al. Mammographic density and the risk of breast cancer in Japanese women. Br J Cancer. 2005;92:2102–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kotsuma Y, Tamaki Y, Nishimura T, Tsubai M, Ueda S, Shimazu K, et al. Quantitative assessment of mammographic density and breast cancer risk for Japanese women. Breast. 2008;17:27–35 Epub 2007 Aug 22.

    Article  PubMed  Google Scholar 

  12. Wong CS, Lim GH, Gao F, Jakes RW, Offman J, Chia KS, et al. Mammographic density and its interaction with other breast cancer risk factors in an Asian population. Br J Cancer. 2011;2011(104):871–4. doi:10.1038/sj.bjc.6606085.Epub.

    Article  Google Scholar 

  13. Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. The quantitative-analysis of mammographic densities. Phys Med Biol. 1994;39:1629–38.

    Article  PubMed  CAS  Google Scholar 

  14. Sivaramakrishna R, Obuchowski NA, Chilcote WA, Powell KA. Automatic segmentation of mammographic density. Acad Radiol. 2001;8:250–6.

    Article  PubMed  CAS  Google Scholar 

  15. Highnam R, Pan X, Warren R, Jeffreys M, Smith GD, Brady M. Breast composition measurements using retrospective standard mammogram form (SMF). Phys Med Biol. 2006;51:2695–713.

    Article  PubMed  CAS  Google Scholar 

  16. Highnam R, Jeffreys M, McCormack V, Warren R, Smith GD, Brady M. Comparing measurements of breast density. Phys Med Biol. 2007;52:5881–95.

    Article  PubMed  CAS  Google Scholar 

  17. Kaufhold S, Dohrmann R, Ufer K, Meyer FM. Comparison of methods for the quantification of montmorillonite in bentonites. Appl Clay Sci. 2002;22:145–51.

    Article  CAS  Google Scholar 

  18. Pawluczyk O, Augustine BJ, Yaffe MJ, Rico D, Yang JW, Mawdsley GE, et al. A volumetric method for estimation of breast density on digitized screen-film mammograms. Med Phys. 2003;30:352–64.

    Article  PubMed  Google Scholar 

  19. Ducote JL, Molloi S. Quantification of breast density with dual energy mammography: a simulation study. Med Phys. 2008;35:5411–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ducote JL, Molloi S. A quantification of breast density with dual energy mammography: an experimental feasibility study. Med Phys. 2010;37(793–801):24.

    Google Scholar 

  21. Ding H, Molloi S. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study. Phys Med Biol. 2012;2012(57):4719–38. doi:10.1088/0031-9155/57/15/4719.Epub.

    Article  Google Scholar 

  22. D’Orsi CJ, Vassett JW, Berg WA, Feig SA, Jackson VP, Kopans DB, et al. ACR BI-RADS––mammography. 4th ed. In: ACR breast imaging reporting and data system, breast imaging atlas. Reston: American College of Radiology; 2003.

  23. Research questions about relationships among variables. In: Dawson B, Trapp RG, editors. Basic and clinical biostatistics, Chapter 8. 4th ed. New York: McGrawHill; 2004. pp. 190–220.

  24. Venturini E, Losio C, Panizza P, Rodighiero MG, Fedele I, Tacchini S, et al. Tailored breast cancer screening program with microdose mammography, US, and MR imaging: short-term results of a pilot study in 40–49-year-old women. Radiology. 2013;2013(268):347–55. doi:10.1148/radiol.13122278.Epub.

    Article  Google Scholar 

  25. Heine JJ, Carston MJ, Scott CG, Brandt KR, Wu FF, Pankratz VS, et al. An automated approach for estimation of breast density. Cancer Epidemiol Biomark Prev. 2008;17:3090–7. doi:10.1158/1055-9965.EPI-08-0170.

    Article  Google Scholar 

  26. Jeffreys M, Warren R, Highnam R, Smith GD. Initial experiences of using an automated volumetric measure of breast density: the standard mammogram form. Br J Radiol. 2006;79:378–82.

    Article  PubMed  CAS  Google Scholar 

  27. El-Bastawissi AY, White E, Mandelson MT, Taplin SH. Reproductive and hormonal factors associated with mammographic breast density by age (United States). Cancer Causes Control. 2000;11(10):955–63.

    Article  PubMed  CAS  Google Scholar 

  28. El-Bastawissi AY, White E, Mandelson MT, Taplin S. Variation in mammographic breast density by race. Ann Epidemiol. 2001;11(4):257–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

There is no grant support.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youichi Machida.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machida, Y., Tozaki, M., Yoshida, T. et al. Feasibility study of a breast density measurement within a direct photon-counting mammography scanner system. Jpn J Radiol 32, 561–567 (2014). https://doi.org/10.1007/s11604-014-0333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-014-0333-x

Keywords

Navigation