Skip to main content

Advertisement

Log in

Influence of age and sex on signal intensities of the posterior lobe of the pituitary gland on T1-weighted images from 3 T MRI

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To elucidate the influence of age and sex on the signal intensity (SI) of the posterior lobe of the pituitary gland (PPG) on T1-weighted images (T1WI) from 3 T MRI.

Materials and methods

Sagittal T1WI acquired from three-dimensional fast spoiled gradient recalled acquisition in the steady state in 1,634 subjects without conditions affecting antidiuretic hormone were evaluated retrospectively. The presence or absence of a bright signal in the PPG was assessed qualitatively. The SI ratio of the PPG to the pons (SIR) was obtained from quantitative measurements. We statistically analyzed these data, creating 14 subject groups categorized according to age and sex, and applied a Poisson generalized linear model to the SIR data.

Results

The characteristic bright signal was absent in 47 subjects (2.8 %), with no significant difference in incidence among the groups. The SIR was inversely related to age in both males (r > 0.7) and females (r > 0.9), and was significantly higher in females in the third to the eighth decades (p < 0.05). Analysis of the whole SIR dataset using a generalized linear model showed that the estimated SIR decreased by 1.7 % per decade and is higher in females.

Conclusion

Age and sex influence the SI of the PPG on T1WI. These findings may aid the recognition of PPG signal abnormalities on T1WI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sato N, Tanaka S, Tateno M, Ohya N, Takata K, Endo K. Origin of posterior pituitary high intensity on T1-weighted magnetic resonance imaging. Immunohistochemical, electron microscopic, and magnetic resonance studies of posterior pituitary lobe of dehydrated rabbits. Invest Radiol. 1995;30:567–71.

    Article  PubMed  CAS  Google Scholar 

  2. O’Neill PA, McLean KA. Water homeostasis and ageing. Med Lab Sci. 1992;49:291–8.

    PubMed  Google Scholar 

  3. Edwards CR. Vasopressin and oxytocin in health and disease. Clin Endocrinol Metab. 1977;6:223–59.

    Article  PubMed  CAS  Google Scholar 

  4. Goldsmith SR. The role of vasopressin in congestive heart failure. Cleve Clin J Med. 2006;73(Suppl 3):S19–23.

    Article  PubMed  Google Scholar 

  5. Sato N, Endo K, Kawai H, Shimada A, Hayashi M, Inoue T. Hemodialysis: relationship between signal intensity of the posterior pituitary gland at MR imaging and level of plasma antidiuretic hormone. Radiology. 1995;194:277–80.

    PubMed  CAS  Google Scholar 

  6. Sharshar T, Carlier R, Blanchard A, et al. Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med. 2002;30:497–500.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson AG, Crawford GA, Kelly D, Nguyen TV, Gyory AZ. Arginine vasopressin and osmolality in the elderly. J Am Geriatr Soc. 1994;42:399–404.

    PubMed  CAS  Google Scholar 

  8. Zerbe RL, Vinicor F, Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes. 1979;28:503–8.

    Article  PubMed  CAS  Google Scholar 

  9. Colombo N, Berry I, Kucharczyk J, et al. Posterior pituitary gland: appearance on MR images in normal and pathologic states. Radiology. 1987;165:481–5.

    PubMed  CAS  Google Scholar 

  10. Brooks BS, el Gammal T, Allison JD, Hoffman WH. Frequency and variation of the posterior pituitary bright signal on MR images. AJNR Am J Neuroradiol. 1989;10:943–8.

    PubMed  CAS  Google Scholar 

  11. Terano T, Seya A, Tamura Y, Yoshida S, Hirayama T. Characteristics of the pituitary gland in elderly subjects from magnetic resonance images: relationship to pituitary hormone secretion. Clin Endocrinol (Oxf). 1996;45:273–9.

    Article  CAS  Google Scholar 

  12. Fujisawa I, Asato R, Nishimura K, et al. Anterior and posterior lobes of the pituitary gland: assessment by 1.5 T MR imaging. J Comput Assist Tomogr. 1987;11:214–20.

    Article  PubMed  CAS  Google Scholar 

  13. Fujisawa I, Asato R, Kawata M, et al. Hyperintense signal of the posterior pituitary on T1-weighted MR images: an experimental study. J Comput Assist Tomogr. 1989;13:371–7.

    Article  PubMed  CAS  Google Scholar 

  14. Fujisawa I, Nishimura K, Asato R, et al. Posterior lobe of the pituitary in diabetes insipidus: MR findings. J Comput Assist Tomogr. 1987;11:221–5.

    Article  PubMed  CAS  Google Scholar 

  15. Gudinchet F, Brunelle F, Barth MO, et al. MR imaging of the posterior hypophysis in children. AJR Am J Roentgenol. 1989;153:351–4.

    Article  PubMed  CAS  Google Scholar 

  16. Fujisawa I. Magnetic resonance imaging of the hypothalamic-neurohypophyseal system. J Neuroendocrinol. 2004;16:297–302.

    Article  PubMed  CAS  Google Scholar 

  17. Satogami N, Miki Y, Koyama T, Kataoka M, Togashi K. Normal pituitary stalk: high-resolution MR imaging at 3T. AJNR Am J Neuroradiol. 2010;31:355–9.

    Article  PubMed  CAS  Google Scholar 

  18. Dorsa DM, Bottemiller L. Age-related changes of vasopressin content of microdissected areas of the rat brain. Brain Res. 1982;242:151–6.

    Article  PubMed  CAS  Google Scholar 

  19. Silverman WF, Aravich PA, Sladek JR Jr, Sladek CD. Physiological and biochemical indices of neurohypophyseal function in the aging Fischer rat. Neuroendocrinology. 1990;52:181–90.

    Article  PubMed  CAS  Google Scholar 

  20. Fotheringham AP, Davidson YS, Davies I, Morris JA. Age-associated changes in neuroaxonal transport in the hypothalamo-neurohypophysial system of the mouse. Mech Ageing Dev. 1991;60:113–21.

    Article  PubMed  CAS  Google Scholar 

  21. Perucca J, Bouby N, Valeix P, Bankir L. Sex difference in urine concentration across differing ages, sodium intake, and level of kidney disease. Am J Physiol Regul Integr Comp Physiol. 2007;292:R700–5.

    Article  PubMed  CAS  Google Scholar 

  22. Ishikawa S, Fujita N, Fujisawa G, et al. Involvement of arginine vasopressin and renal sodium handling in pathogenesis of hyponatremia in elderly patients. Endocr J. 1996;43(1):101–8.

    Article  PubMed  CAS  Google Scholar 

  23. Kihara M, Shioyama M, Okuda K, Takahashi M. The impact of aging on vasa nervorum, nerve blood flow and vasopressin responsiveness. Can J Neurol Sci. 2002;29:164–8.

    PubMed  Google Scholar 

  24. O’Neill PA, Davies I, Wears R, Barrett JA. Elderly female patients in continuing care: why are they hyperosmolar? Gerontology. 1989;35:205–9.

    Article  PubMed  Google Scholar 

  25. Creager MA, Faxon DP, Cutler SS, Kohlmann O, Ryan TJ, Gavras H. Contribution of vasopressin to vasoconstriction in patients with congestive heart failure: comparison with the renin–angiotensin system and the sympathetic nervous system. J Am Coll Cardiol. 1986;7:758–65.

    Google Scholar 

  26. Vargas E, Lye M, Faragher EB, Goddard C, Moser B, Davies I. Cardiovascular haemodynamics and the response of vasopressin, aldosterone, plasma renin activity and plasma catecholamines to head-up tilt in young and old healthy subjects. Age Ageing. 1986;15:17–28.

    Article  PubMed  CAS  Google Scholar 

  27. Meyer BR. Renal function in aging. J Am Geriatr Soc. 1989;37:791–800.

    PubMed  CAS  Google Scholar 

  28. Bakris G, Bursztyn M, Gavras I, Bresnahan M, Gavras H. Role of vasopressin in essential hypertension: racial differences. J Hypertens. 1997;15:545–50.

    Article  PubMed  CAS  Google Scholar 

  29. Crofton JT, Dustan H, Share L, Brooks DP. Vasopressin secretion in normotensive black and white men and women on normal and low sodium diets. J Endocrinol. 1986;108:191–9.

    Article  PubMed  CAS  Google Scholar 

  30. Share L, Crofton JT, Ouchi Y. Vasopressin: sexual dimorphism in secretion, cardiovascular actions and hypertension. Am J Med Sci. 1988;295:314–9.

    Article  PubMed  CAS  Google Scholar 

  31. Zerbe RL, Miller JZ, Robertson GL. The reproducibility and heritability of individual differences in osmoregulatory function in normal human subjects. J Lab Clin Med. 1991;117:51–9.

    PubMed  CAS  Google Scholar 

  32. Sato N, Ishizaka H, Matsumoto M, Matsubara K, Tsushima Y, Tomioka K. MR detectability of posterior pituitary high signal and direction of frequency encoding gradient. J Comput Assist Tomogr. 1991;15:355–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jun’ichi Kotoku, Ph.D., and Mr. Desmond Bell for their assistance in preparing this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asako Yamamoto.

About this article

Cite this article

Yamamoto, A., Oba, H. & Furui, S. Influence of age and sex on signal intensities of the posterior lobe of the pituitary gland on T1-weighted images from 3 T MRI. Jpn J Radiol 31, 186–191 (2013). https://doi.org/10.1007/s11604-012-0168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-012-0168-2

Keywords

Navigation