Skip to main content
Log in

Assessment of cerebral perfusion from bypass arteries using magnetic resonance regional perfusion imaging in patients with moyamoya disease

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate whether cerebral perfusion from bypassed arteries can be demonstrated on regional perfusion imaging (RPI) using arterial spin labeling. We then compared cerebral perfusion on RPI and digital subtraction angiography (DSA) in moyamoya patients who underwent extracranial-intracranial bypass surgery.

Materials and methods

We performed RPI using a 3-T magnetic resonance scanner and DSA studies in 11 moyamoya patients treated by bypass surgery. For RPI we placed a selective labeling slab on the bypassed external carotid artery. Two neuroradiologists determined the extent and location of the cerebral perfusion from bypass arteries in the middle cerebral artery territories on RPI and DSA. Kappa analysis was used to assess the interobserver agreement with respect to the extent and location of the cerebral perfusion and to evaluate the intermodality agreement between RPI and DSA.

Results

Interobserver agreement for the extent of cerebral perfusion on RPI was very good (kappa = 0.89), with excellent location (kappa = 1.00). Intermodality agreement for the extent of perfusion was very good (kappa = 0.89), with good location (kappa = 0.74).

Conclusion

RPI is useful for evaluating cerebral perfusion from bypass arteries in moyamoya patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease: disease showing abnormal net-like vessels in base of brain. Arch Neurol 1996;20:288–299.

    Google Scholar 

  2. Suzuki J, Kodama N. Moyamoya disease: a review. Stroke 1983;14:104–109.

    CAS  PubMed  Google Scholar 

  3. Reis CV, Safavi-Abbasi S, Zabramski JM, Gusmao SN, Spetzler RF, Preul MC. The history of neurosurgical procedures for moyamoya disease. Neurosurg Focus 2006;20:E7.

    Article  PubMed  Google Scholar 

  4. Kuroda S, Houkin K. Moyamoya disease: current concepts and future perspectives. Lancet Neurol 2008;7:1056–1066.

    Article  PubMed  Google Scholar 

  5. Togao O, Mihara F, Yoshiura T, Tanaka A, Noguchi T, Kuwabara Y, et al. Cerebral hemodynamics in moyamoya disease: correlation between perfusion-weighted MR imaging and cerebral angiography. AJNR Am J Neuroradiol 2006;27:391–397.

    CAS  PubMed  Google Scholar 

  6. Calamante F, Ganesan V, Kirkham FJ, Jan W, Chong WK, Gadian DG, et al. MR perfusion imaging in moyamoya syndrome: potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke 2001;32:2810–2816.

    Article  CAS  PubMed  Google Scholar 

  7. Siewert B, Schlaugh G, Edelman RR, Warach S. Comparison of EPISTAR and T2-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology 1997;48:673–679.

    CAS  PubMed  Google Scholar 

  8. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680–687.

    CAS  PubMed  Google Scholar 

  9. Detre JA, Alsop DC. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol 1999;30:115–124.

    Article  CAS  PubMed  Google Scholar 

  10. Van Laar PJ, van der Grond J, Hendrikse J. Brain perfusion territory imaging: methods and clinical applications of selective arterial spin-labeling MR imaging. Radiology 2008;246:354–364.

    Article  PubMed  Google Scholar 

  11. Hendrikse J, van der Grond J, Lu H, van Zijl PC, Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004;35:882–887.

    Article  PubMed  Google Scholar 

  12. Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15–21.

    Article  PubMed  Google Scholar 

  13. Wong EC. Vessel-encoded arterial spin-labeling using pseudo-continuous tagging. Magn Reson Med 2007;58:1086–1091.

    Article  PubMed  Google Scholar 

  14. Chng SM, Petersen ET, Zimine I, Sitho YY, Lim CC, Golay X. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke 2008;39:3248–3254.

    Article  PubMed  Google Scholar 

  15. Van Laar PJ, van der Grond J, Bremmer JP, Klijn CJ, Hendrikse J. Assessment of the contribution of the external carotid artery occlusion. Stroke 2008;39:3003–3008.

    Article  PubMed  Google Scholar 

  16. Pruessmann KP, Golay X, Stuber M, Scheidegger MB, Boesiger P. RF pulse concatenation for spatially selective inversion. J Magn Reson 2000;146:58–65.

    Article  CAS  PubMed  Google Scholar 

  17. Osborn AG. Normal vascular anatomy. In: Osborn AG, editor. Diagnostic neuroradiology. 1st edn. St. Louis: Mosby; 1994. p. 117–153.

    Google Scholar 

  18. Osborn AG. The middle cerebral artery: normal gross and angiographic anatomy of the craniocervical vasculature. In: Osborn AG, editor. Diagnostic cerebral angiography. 2nd edn. Philadelphia: Lippincott; 1999. p. 135–172.

    Google Scholar 

  19. Yongbi MN, Fera F, Yang Y, Frank JA, Duyn JH. Pulsed arterial spin labeling: comparison of multisection baseline and functional MR perfusion signal at 1.5 and 3.0 T: initial results in six subjects. Radiology 2002;222:569–575.

    Article  PubMed  Google Scholar 

  20. Franke C, van Dorsten FA, Olah L, Schwindt W, Hoehn M. Arterial spin tagging perfusion imaging of rat brain: dependency on magnetic field strength. Magn Reson Imaging 2000;18:1109–1113.

    Article  CAS  PubMed  Google Scholar 

  21. Golay X, Petersen ET. Arterial spin labeling: benefits and pitfalls of high magnetic field. Neuroimaging Clin N Am 2006;16:259–268.

    Article  PubMed  Google Scholar 

  22. Liebeskind DS. Collateral circulation. Stroke 2003;34:2279–2284.

    Article  PubMed  Google Scholar 

  23. Gibbs JM, Wise RJ, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984;1:310–314.

    Article  CAS  PubMed  Google Scholar 

  24. Matsushima T, Fukui M, Kitamura K, Hasuo K, Kuwabara Y, Kurokawa T. Encephalo-duro-arterio-synangiosis in children with moyamoya disease. Acta Neurochir (Wien) 1990;104:96–102.

    Article  CAS  Google Scholar 

  25. Nochide I, Ohta S, Ueda T, Shiraishi M, Watanaba H, Sasaki S, et al. Evaluation of cerebral perfusion from bypass arteries using selective intraarterial microsphere tracer after vascular reconstructive surgery. AJNR Am J Neuroradiol 1998;19:1669–1676.

    CAS  PubMed  Google Scholar 

  26. Hendrikse J, van der Zwan A, Ramos LM. Altered flow territories after extracranial-intracranial bypass surgery. Neurosurgery 2005;57:486–494.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Kitajima.

About this article

Cite this article

Kitajima, M., Hirai, T., Shigematsu, Y. et al. Assessment of cerebral perfusion from bypass arteries using magnetic resonance regional perfusion imaging in patients with moyamoya disease. Jpn J Radiol 28, 746–753 (2010). https://doi.org/10.1007/s11604-010-0507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-010-0507-0

Key words

Navigation