Skip to main content
Log in

Estimation of organs doses and radiation-induced secondary cancer risk from scattered photons for conventional radiation therapy of nasopharynx: a Monte Carlo study

  • Technical Note
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

We used Monte Carlo modeling to calculate the organs doses due to out-of field photons during radiation therapy of the nasopharynx.

Materials and methods

A medical internal radiation dose (MIRD)-based mathematical phantom resembling an adult man was modeled by MCNP4C MC code. Three validated models of a cobalt-60 machine, a 6-MV photon beam of a Varian 2300 C/D linac, and a 9-MV photon beam of a Neptun linac were used to simulate the isocentric irradiation of a mathematical phantom with two lateral fields of the nasopharynx. The organspecific dose, effective dose, and cancer risk estimates were obtained.

Results

The effective doses for out-of-field radiation were 320, 295, and 248 mSv for the 60Co beam, 6-MV beam, and 9-MV beam devices, respectively, for a 70-Gy tumor dose. The fatal cancer risks of 1.6%, 1.5%, and 1.2% were estimated for a 70-Gy tumor dose of 60Co and the 6- and 9-MV photon beams, respectively.

Conclusion

Our results regarding the effective dose and cancer risk are in agreement with previously published experimental results on conventional radiation therapy. Further investigation on patients’ out-of-field dose to provide more knowledge on various radiotherapy techniques is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Errico F. Dosimetric issues in radiation protection of radiotherapy patients. Radiat Prot Dosimetry 2006;118:205–212.

    Article  PubMed  Google Scholar 

  2. Howell RM, Hertel NE, Wang Z, Hutchinson J, Fullerton GD. Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies. Med Phys 2006;33:360–368.

    Article  PubMed  Google Scholar 

  3. Kry SF, Salehpour M, Followill DS, Stovall M, Kuban DA, White RA, et al. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2005;62:1204–1216.

    PubMed  Google Scholar 

  4. Reft CS, Runkel-Muller R, Myrianthopoulos L. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT. Med Phys 2006;33:3734–3742.

    Article  PubMed  Google Scholar 

  5. Verellen D, Vanhavere F. Risk assessment of radiation-induced malignancies based on whole-body equivalent dose estimates for IMRT treatment in the head and neck region. Radiother Oncol 1999;53:199–203.

    Article  CAS  PubMed  Google Scholar 

  6. Walsh L, Ruhm W, Kellerer AM. Cancer risk estimates for gamma-rays with regard to organ-specific doses. Part II. Sitespecific solid cancers. Radiat Environ Biophys 2004;43:225–231.

    Article  PubMed  Google Scholar 

  7. Wiezorek T, Voigt A, Metzger N, Georg D, Schwedas M, Salz H, et al. Experimental determination of peripheral doses for different IMRT techniques delivered by a Siemens linear accelerator. Strahlenther Onkol 2008;184:73–79.

    Article  PubMed  Google Scholar 

  8. Sharma SD, Upreti RR, Laskar S, Tambe CM, Deshpande DD, Shrivastava SK, et al. Estimation of risk of radiation-induced carcinogenesis in adolescents with nasopharyngeal cancer treated using sliding window IMRT. Radiother Oncol 2008;86:177–181.

    Article  PubMed  Google Scholar 

  9. Warde P. Radiotherapy: practical applications and clinical aspects. Medicine 2007;36:15–18.

    Article  Google Scholar 

  10. Mutic S, Low D. Whole-body dose from tomotherapy delivery. Int J Radiat Oncol Biol Phys 1998;42:229–232.

    CAS  PubMed  Google Scholar 

  11. Schneider U, Lomax A, Pemler P, Besserer J, Ross D, Lombriser N, et al. The impact of IMRT and proton radiotherapy on secondary cancer incidence. Strahlenther Onkol 2006;182:647–652.

    Article  PubMed  Google Scholar 

  12. Stathakis S, Li J, Ma CC. Monte Carlo determination of radiation-induced cancer risks for prostate patients undergoing intensity-modulated radiation therapy. J Appl Clin Med Phys 2007;8:2685.

    Article  PubMed  Google Scholar 

  13. Stovall M, Blackwell CR, Cundiff J, Novack DH, Palta JR, Wagner LK, et al. Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36. Med Phys 1995;22:63–82.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrari P, Gualdrini G. MCNPX internal dosimetry studies based on the NORMAN-05 voxel model. Radiat Prot Dosimetry 2007;127:209–213.

    Article  CAS  PubMed  Google Scholar 

  15. Kry SF, Titt U, Pönisch F, Followill D, Vassiliev ON, White RA, et al. A Monte Carlo model for calculating out-of-field dose from a varian 6 MV beam. Med Phys 2006;33:4405–4413.

    Article  PubMed  Google Scholar 

  16. Palm A, Johansson KA. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncol 2007;46:462–473.

    Article  PubMed  Google Scholar 

  17. Bednarz B, Xu XG. A feasibility study to calculate unshielded fetal doses to pregnant patients in 6-MV photon treatments using Monte Carlo methods and anatomically realistic phantoms. Med Phys 2008;35:3054–3061.

    Article  PubMed  Google Scholar 

  18. Bednarz B, Hancox C, Xu XG. Calculated organ doses from selected prostate treatment plans using Monte Carlo simulations and an anatomically realistic computational phantom. Phys Med Biol 2009;54:5271–5286.

    Article  PubMed  Google Scholar 

  19. Zhang J, Bednarz B, Xu XG. An investigation of voxel geometries for MCNP-based radiation dose calculations. Health Phys 2006;91(suppl):S59–65.

    Article  CAS  PubMed  Google Scholar 

  20. Xu XG, Bednarz B, Paganetti H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys Med Biol 2008;53:R193–R241.

    Article  PubMed  Google Scholar 

  21. NCRP Report 116. limitation of exposure to ionizing radiation. Bethesda, MD: National Council on Radiation Protection and Measurements; 1993.

  22. ICRP Publication 103. Recommendations of the international commission on radiological protection. Ann ICRP 2007;37:2–3.

    Google Scholar 

  23. Mesbahi A, Fix M, Allahverdi M, Grein E, Garaati H. Monte Carlo calculation of Varian 2300C/D Linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements. Appl Radiat Isot 2005;62:469–477.

    Article  CAS  PubMed  Google Scholar 

  24. Mesbahi A, Allahverdi M, Gheraati H. Monte Carlo dose calculations in conventional thorax fields for 60 Co photons. Radiat Med 2005;23:341–350.

    PubMed  Google Scholar 

  25. Mesbahi A. Dosimetric characteristics of unflattened 6 MV photon beams of a clinical linear accelerator: a Monte Carlo study. Appl Radiat Isot 2007;65:1029–1036.

    Article  CAS  PubMed  Google Scholar 

  26. Mesbahi A, Nejad FS. Dose attenuation effect of hip prostheses in a 9-MV photon beam: commercial treatment planning system versus Monte Carlo calculations. Radiat Med 2007;25:529–535.

    Article  PubMed  Google Scholar 

  27. Meeks SL, Paulino AC, Pennington EC, Simon HG, Skwarchuk MW, Buatti JM. In vivo determination of extratarget doses received from serial tomotherapy. Radiother Oncol 2002;63:217–222.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Mesbahi.

About this article

Cite this article

Mesbahi, A., Seyednejad, F. & Gasemi-Jangjoo, A. Estimation of organs doses and radiation-induced secondary cancer risk from scattered photons for conventional radiation therapy of nasopharynx: a Monte Carlo study. Jpn J Radiol 28, 398–403 (2010). https://doi.org/10.1007/s11604-010-0432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-010-0432-2

Key words

Navigation