Skip to main content

Advertisement

Log in

Effect of a carbon fiber tabletop on the surface dose and attenuation for high-energy photon beams

  • Original Article
  • Published:
Radiation Medicine Aims and scope Submit manuscript

Abstract

Purpose

The dose changes in the buildup region and beam attenuation by a carbon fiber tabletop were investigated for 6-and 18-MV photon beams.

Materials and methods

Measurements were performed for 2 × 2 cm to 40 × 40 cm field sizes. The surface dose and percentage depth doses (PDD) were measured by a Markus parallel plate chamber. Attenuation measurements were made at the cylindrical phantom for 180° rotation of the beam.

Results

A carbon fiber tabletop increases the surface dose from 7.5% to 63.0% and from 4% to 43% for small fields at 6 and 18 MV, respectively. The increase was nearly fivefold for the 10 × 10 cm field and nearly twofold for the 40 × 40 cm field. Beam attenuation of the tabletop varies from 3.0% to 5.6% for 180° and 120° gantry angles for 6 MV.

Conclusion

The carbon fiber tabletop significantly decreases the skin-sparing effect. The dosimetric effect of the tabletop may be higher, especially for the intensity-modulated radiation therapy depending on the beam orientation. Attenuation should be considered and corrected such as any material under the patient at the treatment planning stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim S, Liu CR, Zhu TC, Palta JR. Photon beam skin dose analyses for different clinical setups. Med Phys 1998;25:860–866.

    Article  PubMed  CAS  Google Scholar 

  2. Cheung T, Butson MJ, Yu PK. Evaluation of build-up dose from 6 MV X-rays under pelvic and abdominal patient immobilization devices. Radiat Meas 2002;35:235–238.

    Article  CAS  Google Scholar 

  3. Nilsson B. Electron contamination from different materials in high energy photon beams. Phys Med Biol 1985;30:139–151.

    Article  PubMed  CAS  Google Scholar 

  4. Williams P, Warwick R, Dyson M, Bannister L. Gray’s anatomy. 37th edition. New York: Churchill Livingstone, 1989.

    Google Scholar 

  5. Butson MJ, Mathur JN, Metcalfe PE. Skin dose from radiotherapy X-ray beams: the influence of energy. Australas Radiol 1997;41:148–150.

    PubMed  CAS  Google Scholar 

  6. Gerbi BJ, Khan FM. Measurements of dose in the build-up region on using fixed-separation plane-parallel ionization chamber. Med Phys 1990;17:17–26.

    Article  PubMed  CAS  Google Scholar 

  7. Gerbi BJ. The response characteristics of a newly designed plane-parallel ionization chamber in high-energy photon and electron beams. Med Phys 1993;20:1411–1415.

    Article  PubMed  CAS  Google Scholar 

  8. Jornet N, Ribas M, Eudaldo T. In vivo dosimetry: intercomparison between p-type based and n-type based diodes for the 16–25 MV energy range. Med Phys 2000;27:1287–1293.

    Article  PubMed  CAS  Google Scholar 

  9. Kron T, Elliot A, Wong T, Showell G, Clubb B, Metcalfe P. X-ray surface dose measurements using TLD extrapolation. Med Phys 1993;20:703–711.

    Article  PubMed  CAS  Google Scholar 

  10. Devic S, Seuntjens J, Abdel-Rahman W, Evans M, Olivares M, Podgorsak EB. Accurate skin dose measurements using radiochromic film in clinical applications. Med Phys 2006;33:1116–1124.

    Article  PubMed  CAS  Google Scholar 

  11. Butson MJ, Rosenfeld A, Mathur JN, Carolan M, Wong TPY, Metcalfe PE. A new radiotherapy surface dose detector: the MOSFET. Med Phys 1996;23:655–658.

    Article  PubMed  CAS  Google Scholar 

  12. De Ost B, Vanregemorter J, Schaeken B, Van den Weyngaert D. The effect of carbon fiber inserts on the build-up and attenuation of high energy photon beams. Radiother Oncol 1997;45:275–277.

    Article  PubMed  Google Scholar 

  13. Viera SC, Kaatee RSC, Dirkx MLP, Heijmen BJM. Two-dimensional measurement of photon beam attenuation by the treatment couch and immobilization devices using an electronic portal imaging device. Med Phys 2003;30:2981–2987.

    Article  Google Scholar 

  14. Poppe B, Chofor N, Rühmann A, Kunth W, Djouguela A. The effect of a carbon-fiber couch on the depth-dose curves and transmission properties for megavoltage photon beams. Strahlen Oncol 2006;183:43–48.

    Article  Google Scholar 

  15. McCormack S, Diffey J, Morgan A. The effect of gantry angle on megavoltage photon beam attenuation by a carbon fiber couch insert. Med Phys 2005;32:483–487.

    Article  PubMed  Google Scholar 

  16. Gerbi BJ, Khan FM. The polarity effect for commercially available plane parallel ionization chambers. Med Phys 1987;14:210–215.

    Article  PubMed  CAS  Google Scholar 

  17. Mellenberg DE. Determination of build-up region over-response corrections for a Markus-type chamber. Med Phys 1990;17:1041–1044.

    Article  PubMed  Google Scholar 

  18. Spezi E, Ferri A. Dosimetric characteristics of the Siemens IGRT carbon fiber tabletop. Med Dosim 2007;32:295–298

    Article  PubMed  Google Scholar 

  19. Meara SJP, Langmack KA. An investigation into the use of carbon fiber for megavoltage radiotherapy applications. Phys Med Biol 1998;43:1359–1366.

    Article  PubMed  CAS  Google Scholar 

  20. Higgins DM, Whitehurst P, Morgan AM. The effect of carbon fiber couch inserts on surface dose with beam size variation. Med Dosim 2001;26:251–254.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gönül Kemikler.

About this article

Cite this article

Meydanci, T.P., Kemikler, G. Effect of a carbon fiber tabletop on the surface dose and attenuation for high-energy photon beams. Radiat Med 26, 539–544 (2008). https://doi.org/10.1007/s11604-008-0271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-008-0271-6

Key words

Navigation