Skip to main content
Log in

Stress field estimation by the geoid undulations of the Samos-Kuşadası Bay and implications for seismogenic behavior

  • Research Article - Special Issue
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The strong earthquake with magnitude 6.9 occurred offshore at the northernmost edge of the Samos Island and was strongly felt in the north Aegean islands and İzmir metropolitan city. In this study, the effective elastic thicknesses of the lithosphere and seismogenic layer thickness were correlated with each other in order to understand the nature of the earthquakes. We determined that the upper and lower depth limits of seismogenic layer are in a range of 5–15 km, meaning that only the upper crust is mostly involved in earthquakes in the study area. The fact that seismogenic layer and effective elastic thicknesses are close to each other indicates that the earthquake potential may be within the seismogenic layer. Following that, we estimate the stress field from the geoid undulations as a proxy of gravity potential energy in order to analyze the amplitude and orientation of the stress vectors and seismogenic behavior implications. The discrete wavelet transform has been carried out to decompose the isostatic residual gravity anomalies into horizontal, vertical and diagonal detail coefficients. The results delineated edges of gravity anomalies that reveal some previously unknown features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arısoy MÖ, Dikmen Ü (2011) Potensoft: MATLAB-based software for potential field data processing, modeling and mapping. Comput Geosci 37(7):935–942

    Article  Google Scholar 

  • Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geodesy 86(7):499–520

    Article  Google Scholar 

  • Barka A (1992). The north Anatolian fault zone. Paper presented at the Annales tectonicae.

  • Bilim F, Akay T, Aydemir A, Kosaroglu S (2016) Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60:44–57

    Article  Google Scholar 

  • Biryol CB, Beck SL, Zandt G, Özacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184(3):1037–1057

    Article  Google Scholar 

  • Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A, Vales N, Reinquin F (2012). World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids. Paper presented at the EGU general assembly conference abstracts.

  • Bozkurt E (2001) Neotectonics of Turkey–a synthesis. Geodin Acta 14(1–3):3–30

    Article  Google Scholar 

  • Braitenberg C, Wienecke S, Ebbing J, Born W, Redfield T (2007) Joint gravity and isostatic analysis for basement studies-a novel tool. Paper presented at the extendended abstracts, EGM 2007 international workshop, innovation in EM, Grav and Mag methods: a new perspective for exploration, Villa Orlandi, Capri-Italy.

  • Burov E (2010) The equivalent elastic thickness (Te), seismicity and the long-term rheology of continental lithosphere: time to burn-out “crème brûlée”?: insights from large-scale geodynamic modeling. Tectonophysics 484(1–4):4–26

    Article  Google Scholar 

  • Burov EB, Diament M (1995) The effective elastic thickness (Te) of continental lithosphere: what does it really mean? J Geophys Res Solid Earth 100(B3):3905–3927

    Article  Google Scholar 

  • Butterworth S (1930) On the theory of filter amplifiers. Wirel Eng 7(6):536–541

    Google Scholar 

  • Camelbeeck T, de Viron O, Van Camp M, Kusters D (2013) Local stress sources in Western Europe lithosphere from geoid anomalies. Lithosphere 5(3):235–246

    Article  Google Scholar 

  • Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north-eastern Aegean Sea Islands. Tectonophysics 597:106–122

    Article  Google Scholar 

  • Doğan B (2020) Comparative new insight into the tectonic origin of folds and thrust faults of an extensional basin: Söke-Kuşadası basin, Aegean, Western Turkey. J Earth Sci 31:582–595

    Article  Google Scholar 

  • Doğru, F., Pamukçu, O., Gönenç, T., and Yıldız, H. (2018). Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field models. Bollettino di Geofisica Teorica ed Applicata, 59(2).

  • Dolmaz M, Hisarli Z, Ustaömer T, Orbay N (2005) Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province Turkey. Pure Appl Geophys 162(3):571–590

    Article  Google Scholar 

  • Emre Ö, Özalp S, Doğan A, Özaksoy V, Yıldırım C, Göktaş F (2005) İzmir Yakın Çevresinin Diri Fayları ve Deprem Potansiyelleri [The Active Faults of the İzmir region and their earthquake potentials]. Mineral research and exploration institute of Turkey (MTA) Report(10754).

  • Erbek E, Dolmaz MN (2019) Investigation of the thermal structure and radiogenic heat production through aeromagnetic data for the southeastern Aegean Sea and western part of Turkey. Geothermics 81:113–122

    Article  Google Scholar 

  • Flesch LM, Kreemer C (2010) Gravitational potential energy and regional stress and strain rate fields for continental plateaus: examples from the central Andes and Colorado Plateau. Tectonophysics 482(1–4):182–192

    Article  Google Scholar 

  • Förste C, Bruinsma S, Abrikosov O, Lemoine J, Schaller T, Götze H, Balmino G (2014) EIGEN-6C4. The latest combined global gravity field model including GOCE data up to degree and order, 2190.

  • Gaetani M, Jacobshagen V, Nicora A, Kauffmann G, Tselepidis V, Sestini NF, Skourtsis-Coroneou V (1992) The early-middle Triassic boundary at Chios (Greece). Rivista Italiana di Paleontologia e Stratigrafia 98(2):181–204

    Google Scholar 

  • Ganas A, Elias P, Briole P, Tsironi V, Valkaniotis S, Escartin J, Efstathiou E (2020) Fault responsible for Samos earthquake identified. Temblor. https://doi.org/10.32858/temblor.134

  • Ghosh A, Holt WE, Flesch LM (2009) Contribution of gravitational potential energy differences to the global stress field. Geophys J Int 179(2):787–812

    Article  Google Scholar 

  • Gürer ÖF, Bozcu M, Yılmaz K, Yımaz Y (2001) Neogene basin development around Söke-Kuşadası (western Anatolia) and its bearing on tectonic development of the Aegean region. Geodin Acta 14(1–3):57–69

    Article  Google Scholar 

  • Humphreys ED, Coblentz DD (2007) North American dynamics and western US tectonics. Rev Geophys. https://doi.org/10.1029/2005RG000181

    Article  Google Scholar 

  • Kaya O (1981) Miocene reference section for the coastal parts of West Anatolia. Newslett Straigraph 10(3):164–191

    Article  Google Scholar 

  • King GC, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84(3):935–953

    Google Scholar 

  • Kiratzi AA, Svigkas N (2013) A study of the 8 January 2013 Mw5. 8 earthquake sequence (Lemnos Island, East Aegean Sea). Tectonophysics 608:452–460

    Article  Google Scholar 

  • Kreemer C, Holt WE, Haines AJ (2003) An integrated global model of present-day plate motions and plate boundary deformation. Geophys J Int 154(1):8–34

    Article  Google Scholar 

  • Kreemer C, Chamot-Rooke N, Le Pichon X (2004) Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data. Earth Planet Sci Lett 225(3–4):329–346

    Article  Google Scholar 

  • Kumerics C, Ring U, Brichau S, Glodny J, Monié P (2005) The extensional Messaria shear zone and associated brittle detachment faults, Aegean Sea, Greece. J Geol Soc 162(4):701–721

    Article  Google Scholar 

  • Maggini M, Caputo R (2021) Seismological data versus rheological modelling: Comparisons across the Aegean Region for improving the seismic hazard assessment. J Struct Geol 145:104312

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Veis G (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res Solid Earth 105(B3):5695–5719. https://doi.org/10.1029/1999JB900351

    Article  Google Scholar 

  • McKenzie D (1978) Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophys J Int 55(1):217–254

    Article  Google Scholar 

  • Meng J, Sinoplu O, Zhou Z, Tokay B, Kusky T, Bozkurt E, Wang L (2021) Greece and Turkey Shaken by African tectonic retreat. Sci Rep 11(1):1–10

    Article  Google Scholar 

  • Müller M, Geiger A, Kahle H-G, Veis G, Billiris H, Paradissis D, Felekis S (2013) Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993–2009. Tectonophysics 597:34–49

    Article  Google Scholar 

  • Naliboff J, Lithgow-Bertelloni C, Ruff L, de Koker N (2012) The effects of lithospheric thickness and density structure on Earth′ s stress field. Geophys J Int 188(1):1–17

    Article  Google Scholar 

  • Nomikou P, Evangelidis D, Papanikolaou D, Lampridou D, Litsas D, Tsaparas Y, Koliopanos I (2021) Morphotectonic analysis along the Northern Margin of Samos Island, related to the seismic activity of October 2020, Aegean Sea, Greece. Geosciences, 11(2), 102. Retrieved from https://www.mdpi.com/2076-3263/11/2/102

  • Oruç B (2014) Structural interpretation of southern part of western Anatolian using analytic signal of the second order gravity gradients and discrete wavelet transform analysis. J Appl Geophys 103:82–98

    Article  Google Scholar 

  • Pamukçu O, Yurdakul A (2008) Isostatic compensation in western Anatolia with estimate of the effective elastic thickness. Turk J Earth Sci 17(3):545–557

    Google Scholar 

  • Pamukçu O, Gönenç T, Uyanik O, Sözbilir H, Çakmak O (2014) A microgravity model for the city of İzmir (Western Anatolia) and its tectonic implementations. Acta Geophys 62(4):849–871

    Article  Google Scholar 

  • Papanikolaou D, Sideris C (1983) Le Paléozoïque de l'autochtone de Chios: une formation à blocs de types wildflysch d'âge Permien (pro parte). Comptes-rendus des séances de l'Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l'univers, sciences de la terre, 297(7), 603–606.

  • Papazachos BC, Karakostas V, Papazachos C, Scordilis E (2000) The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics 319(4):275–300

    Article  Google Scholar 

  • Pascal C, Cloetingh SA (2009) Gravitational potential stresses and stress field of passive continental margins: Insights from the south-Norway shelf. Earth Planet Sci Lett 277(3–4):464–473

    Article  Google Scholar 

  • Reilinger R, McClusky S, Paradissis D, Ergintav S, Vernant P (2010) Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488(1–4):22–30

    Article  Google Scholar 

  • Ring U, Laws S, Bernet M (1999) Structural analysis of a complex nappe sequence and late-orogenic basins from the Aegean Island of Samos. Greece J Struct Geol 21(11):1575–1601

    Article  Google Scholar 

  • Röckel T, Lempp C (2003) Der Spannungszustand im Norddeutschen Becken. Erdöl Erdgas Kohle 119(2):73–80

    Google Scholar 

  • Roth F, Fleckenstein P (2001) Stress orientations found in north-east Germany differ from the West European trend. Terra Nova 13(4):289–296

    Article  Google Scholar 

  • Seyitoglu G, Kaypak B, Esat K, Koca B (2020) 2020.10.30 (Mww=7.0) Sisam depremi ve artçılarının Ege’nin neotektonik çerçevesinin anlaşılmasına katkıları/Contributions of the 2020.10.30 (Mww=7.0) Samos earthquake and its aftershocks to the understanding of Aegean neotectonic framework.

  • Stein RS, Barka AA, Dieterich JH (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys J Int 128(3):594–604

    Article  Google Scholar 

  • Sümer Ö, İnci U, Sözbilir H (2013) Tectonic evolution of the Söke Basin: extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. J Geodyn 65:148–175

    Article  Google Scholar 

  • Tur H, Yaltırak C, Elitez İ, Sarıkavak KT (2015) Pliocene-Quaternary tectonic evolution of the Gulf of Gökova, southwest Turkey. Tectonophysics 638:158–176

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cmabridge

    Book  Google Scholar 

  • Uzel B, Sözbilir H, Bora U (2008) A first record of a strike-slip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turk J Earth Sci 17(3):559–591

    Google Scholar 

  • Uzel B, Sözbilir H, Özkaymak Ç (2012) Neotectonic evolution of an actively growing superimposed basin in western Anatolia: the inner bay of Izmir, Turkey. Turk J Earth Sci 21(4):439–471

    Google Scholar 

  • Uzel B, Sözbilir H, Özkaymak Ç, Kaymakcı N, Langereis CG (2013) Structural evidence for strike-slip deformation in the İzmir-Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). J Geodyn 65:94–116

    Article  Google Scholar 

  • Uzel B, Langereis CG, Kaymakci N, Sözbilir H, Özkaymak Ç, Özkaptan M (2015) Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex. Earth Planet Sci Lett 414:108–125

    Article  Google Scholar 

  • Vernant P, Reilinger R, McClusky S (2014) Geodetic evidence for low coupling on the Hellenic subduction plate interface. Earth Planet Sci Lett 385:122–129

    Article  Google Scholar 

  • Zoback ML (1992) First-and second-order patterns of stress in the lithosphere: the world stress map project. J Geophys Res Solid Earth 97(B8):11703–11728

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the valuable responses of two anonymous reviewers. Thanks also to our colleagues Fikret Doğru for providing EET data and Ezgi Erbek for heat flow data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Oruç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by the Guest Editors: Ramon Zuñiga, Eleftheria Papadimitriou, Vassilios Karakostas and Onur Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oruç, B., Balkan, E. Stress field estimation by the geoid undulations of the Samos-Kuşadası Bay and implications for seismogenic behavior. Acta Geophys. 69, 1137–1149 (2021). https://doi.org/10.1007/s11600-021-00604-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-021-00604-7

Keywords

Navigation