Skip to main content
Log in

Comprehensive prediction of coal seam thickness by using in-seam seismic surveys and Bayesian kriging

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Quantitative determination of the coal seam thickness distribution within the longwall panel is one of the primary works before integrated mining. In-seam seismic (ISS) surveys and interpolations are essential methods for predicting thickness. In this study, a new quantitative method that combines ISS and Bayesian kriging (BK), called ISS–BK, is proposed to determine the thickness distribution. ISS–BK consists of the following six steps. (1) The group velocity of Love waves is plotted by using the simultaneous iterative reconstruction technique under a constant frequency value. (2) An approximate quantitative relationship between the thickness and the group velocity is fitted based on sampling points of the coal seam thickness, which are measured during the process of entry development. (3) The group velocity map is translated into a primary thickness map according to the above-mentioned fitted equation. (4) By subtracting the ISS prediction result from the actual thickness at a sampling point, the residual variable is created. (5) The residual distribution is interpolated within the whole longwall panel by applying BK. The residual map establishes the interconnection between the ISS survey and BK. (6) A refined thickness distribution map can be obtained by overlapping the primary thickness map and the residual map. The application of this method to the No. 2408 longwall panel of Yuhua Coal Mine using ISS–BK showed a considerable improvement in thickness prediction accuracy over ISS. The residuals of ISS and ISS–BK mainly lie in the intervals (− 3.0, 3.0 m) and (− 1.0, 3.0 m), respectively. The accurate prediction rates [where the residual lies in the interval (0, 0.1 m)] of ISS and ISS–BK are 9.39% and 50.28%, respectively, and the effective prediction rates (where the residual is less than 1.0 m) of ISS and ISS–BK are 61.88% and 77.90%, respectively. All the above statistics reflect a considerable improvement in the ISS–BK method over the ISS method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • álvarez-Fernández MI, González-Nicieza C, álvarez-Vigil AE, Herrera García G, Torno S (2009) Numerical modelling and analysis of the influence of local variation in the thickness of a coal seam on surrounding stresses: application to a practical case. Int J Coal Geol 79(4):157–166

    Article  Google Scholar 

  • Cheng J, Ji G, Zhu P (2012) Resolution analysis of in-seam seismic tomographic inversion for coal thickness. J China Coal Soc 37(01):67–72

    Google Scholar 

  • Dresen L, Bochum R (1995) Seismic coal exploration, Part B. In-seam seismics. RuhrUniversität Bochum, Institut für Geophysik, Bochum

    Google Scholar 

  • Du W, Peng S (2010) Coal seam thickness prediction with geostatistics. Chin J Rock Mech Eng 29(s1):2762–2767

    Google Scholar 

  • Dziewonski AM, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59:427–444

    Google Scholar 

  • Gersztenkorn A, Scales JA (1988) Smoothing seismic tomograms with alpha-trimmed means. Geophys J 92(1):67–72

    Article  Google Scholar 

  • Hu Z, Zhang P, Xu G (2018) Dispersion features of transmitted channel waves and inversion of coal seam thickness. Acta Geophys 66(5):1001–1009

    Article  Google Scholar 

  • Omre H (1987) Bayesian kriging: merging observations and qualified guesses in kriging. Math Geol 19(1):25–39

    Article  Google Scholar 

  • RäDer D, Schott W, Dresen L, RüTER H (1985) Calculation of dispersion curves and amplitude-depth distributions of love channel waves in horizontally-layered media. Geophys Prospect 33(6):800–816

    Article  Google Scholar 

  • Sahalos JN, Kyriacou G (1985) On the electromagnetic detection of the thickness of a coal or lignite seam with slate backing. J Franklin Inst 320(2):83–101

    Article  Google Scholar 

  • Schott W, Waclawik P (2015) On the quantitative determination of coal seam thickness by means of in-seam seismic surveys. Can Geotech J 52:1496–1504

    Article  Google Scholar 

  • Slavinskii VM, Shilov VI, Chernyak ZA (1985) The output function and calibration curve for a natural-radioactivity coal-seam thickness gauge. Meas Tech 28(8):704–706

    Article  Google Scholar 

  • Sun J, Chen B (2017) Coal-rock recognition approach based on CLBP and support vector guided dictionary learning. J China Coal Soc 42(12):3338–3348

    Google Scholar 

  • Wang B, Liu S, Jiang Z, Huang L (2011) Advanced forecast of coal seam thickness variation by integrated geophysical method in the laneway. In: First international symposium on mine safety science and engineering

  • Wang X, Li Y, Chen T et al (2017) Quantitative thickness prediction of tectonically deformed coal using extreme learning machine and principal component analysis: a case study. Comput Geosci 101(C):38–47

    Article  Google Scholar 

  • Yuan L (2017) Scientific conception of precision coal mining. J China Coal Soc 42(1):1–7

    Google Scholar 

  • Zou G, Xu Z, Peng S, Fan F (2018) Analysis of coal seam thickness and seismic wave amplitude: a wedge model. J Appl Geophys 148:245–255

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key Research and Development Plan (No. 2018YFC0807804) and the Guizhou Science and Technology Major Project (No. [2018]3003-1). Special thanks are given to the anonymous reviewers for their assistance, comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyuan Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Cheng, J., Cui, W. et al. Comprehensive prediction of coal seam thickness by using in-seam seismic surveys and Bayesian kriging. Acta Geophys. 67, 825–836 (2019). https://doi.org/10.1007/s11600-019-00298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-019-00298-y

Keywords

Navigation