Skip to main content
Log in

Spatio-temporal assessments of rockburst hazard combining b values and seismic tomography

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

A better understanding of rockburst precursors and high stress distribution characteristics can allow for higher extraction efficiency with reduced safety concerns. Taking the rockburst that occurred on 30 January 2015 in the Sanhejian Coal Mine, Jiangsu Province, China, as an example, the mechanism of rockburst development in a roadway was analysed, and a combined method involving b values and seismic velocity tomography was used to assess the rockburst in both time and space, respectively. The results indicate that before the rockburst, b values dropped significantly from 0.829 to 0.373. Moreover, a good agreement between a significant decrease in b values and the increase of the number of strong tremors was found. Using seismic tomography, two rockburst risk areas were determined where the maximum velocity, maximum velocity anomaly and maximum velocity gradient anomaly were 6 km/s, 0.14 and 0.13, respectively. The high-velocity regions corresponded well with the rockburst zone and large seismic event distributions. The combination of b values and seismic tomography is proven to have been a promising tool for use in evaluating rockburst risk during underground coal mining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki K (1965) Maximum likelihood estimate of b in the formula log N = a − b M and its confidence limits. Bull Earth Res Inst Univ Tokyo 43:237–239

    Google Scholar 

  • Amitrano D (2003) Brittle–ductile transition and associated seismicity: experimental and numerical studies and relationship with the b value. J Geophys Res 108(B1):2044. doi:10.1029/2001JB000680

    Article  Google Scholar 

  • Cai W, Dou LM, Cao AY, Gong SY, Li ZL (2014) Application of seismic velocity tomography in underground coal mines: a case study of Yima mining area, Henan, China. J Appl Geophys 109:140–149. doi:10.1016/j.jappgeo.2014.07.021

    Article  Google Scholar 

  • Cao AY, Dou LM, Cai W, Gong SY, Liu S, Jing GC (2015) Case study of seismic hazard assessment in underground coal mining using passive tomography. Int J Rock Mech Min Sci 78:1–9. doi:10.1016/j.ijrmms.2015.05.001

    Google Scholar 

  • Dou LM, He H (2014) Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine. Trans Nonferrous Met Soc China 24(4):1255–1261. doi:10.1016/S1003-6326(14)63187-3

    Article  Google Scholar 

  • Dou LM, Chen TJ, Gong SY, He H, Zhang SB (2012) Rockburst hazard determination by using computed tomography technology in deep workface. Saf Sci 5(4):736–740. doi:10.1016/j.ssci.2011.08.043

    Article  Google Scholar 

  • Dou LM, Cai W, Gong SY, Han RJ, Liu J (2014) Dynamic risk assessment of rock burst based on the technology of seismic computed tomography detection. J China Coal Soc 39(2):238–244. doi:10.13225/j.cnki.jccs.2013.2016

    Google Scholar 

  • Dou LM, He J, Cao AY, Gong SY, Cai W (2015) Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine. J. China Coal Soc 40(7):1469–1476. doi:10.13225/j.cnki.jccs.2014.1815

    Google Scholar 

  • Ge M (2005) Efficient mine microseismic monitoring. Int J Coal Geol 64:44–56. doi:10.1016/j.coal.2005.03.004

    Article  Google Scholar 

  • Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36(1):105–117. doi:10.1016/0022-5193(72)90180-4

    Article  Google Scholar 

  • Gong SY (2010) Research and application of using mine tremor velocity tomography to forecast rockburst danger in coal mine. China University of Mining and Technology, Xuzhou

    Google Scholar 

  • Gong SY, Dou LM, He J, He H, Lu CP, Mu ZL (2012) Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment. Rock Soil Mech 33(1):41–47. doi:10.3969/j.issn.1000-7598.2012.01.007

    Google Scholar 

  • Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188

    Google Scholar 

  • He MC, Qian QH (2010) The Basis of Deep Rock Mechanics. Science Press, Beijing (in Chinese)

    Google Scholar 

  • He J, Dou LM, Cai W, Li ZL, Ding YL (2014) Mechanism of dynamic and static combined load inducing rockburst in thin coal seam. J China Coal Soc 39(11):2177–2182. doi:10.13225/j.cnki.jccs.2013.1603

    Google Scholar 

  • Holub K (1996) Space-time variations of the frequency-energy relation for mining-induced seismicity in the Ostrava-Karvina mining district. Pure Appl Geophys 146(2):265–280. doi:10.1007/BF00876493

    Article  Google Scholar 

  • Hosseini N, Oraee K, Shahriar K, Goshtasbi K (2012) Passive seismic velocity tomography and geostatistical simulation on longwall mining panel. Arch Min Sci 57:139–155. doi:10.2478/v10267-012-0010-9

    Google Scholar 

  • Lurka A (2008) Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography. J China Univ Min Technol 18(2):177–181. doi:10.1016/S1006-1266(08)60038-3

    Article  Google Scholar 

  • Luxbacher K, Westman E, Swanson P, Karfakis M (2008) Three-dimensional time-lapse velocity tomography of an underground longwall panel. Int J Rock Mech Min Sci 45(4):478–485. doi:10.1016/j.ijrmms.2007.07.015

    Article  Google Scholar 

  • Main IG, Meredith PG, Sammonds PR (1992) Temporal variations in seismic event rate and b values from stress corrosion constitutive laws. Tectonophysics 211(1–4):233–246. doi:10.1016/0040-1951(92)90061-A

    Article  Google Scholar 

  • Melnikov NN, Kozyrev AA, Panin VI (1996) Induced seismicity in large-scale mining in the Kola Peninsula and monitoring to reveal informative precursors. Pure Appl Geophys 147(2):263–276. doi:10.1007/BF00877482

    Article  Google Scholar 

  • Mutke G, Józef D, Lurka A (2015) New criteria to assess seismic and rock burst hazard in coal mines. Arch Min Sci 60(3):743–760. doi:10.1515/amsc-2015-0049

    Google Scholar 

  • Nur A, Simmons G (1969) Stress-induced velocity anisotropy in rock: an experimental study. J Geophys Res 74(27):6667–6674. doi:10.1029/JB074i027p06667

    Article  Google Scholar 

  • Schorlemmer D, Weimer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542. doi:10.1038/nature04094

    Article  Google Scholar 

  • Urbancic TI, Trifu C-I, Long JM, Young RP (1992) Space-time correlation of b values with stress release. Pure Appl Geophys 139(3/4):449–462. doi:10.1007/BF00879946

    Article  Google Scholar 

  • Wang GF, Gong SY, Li ZL, Dou LM, Wu C, Mao Y (2015) Evolution of stress concentration and energy release before rock bursts: two case studies from Xingan coal mine, Hegang, China. Rock Mech Rock Eng 11:1–9. doi:10.1007/s00603-015-0892-x

    Google Scholar 

  • Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times. J Geophys Res 102:15115–15128. doi:10.1029/97JB00726

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90(4):859–869. doi:10.1785/0119990114

    Article  Google Scholar 

  • Wiemer S, McNutt SR, Wyss M (1998) Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California. Geophys J Int 134(2):409–421. doi:10.1046/j.1365-246x.1998.00561.x

    Article  Google Scholar 

  • Wyss M, Klein F, Nagamine K, Weimer S (2001) Anomalously high b values in the South Flank of Kilauea Hawaii: evidence for the distribution of magma below Kilauea’s East Rift Zone. J Volcanol Geotherm Res 106(1–2):23–37. doi:10.1016/S0377-0273(00)00263-8

    Article  Google Scholar 

  • Yale D (1985) Recent advances in rock physics. Geophysics 50(12):2480–2491

    Article  Google Scholar 

  • Young RP, Maxwell SC, Urbancic TI, Feignier B (1992) Mining-induced microseismicity: monitoring and applications of imaging and source mechanism techniques. Pure appl Geophys 139(3):697–719. doi:10.1007/BF00879959

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided for this work by the National Natural Science Foundation of China (51404269), Fundamental Research Funds for the Central Universities (2013QNA46, 2014ZDPY09), the Jiangsu Natural Science Foundation(BK20130183) and the Research and Innovation Project for College Graduates of Jiangsu Province (KYZZ16_0223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Si-Yuan Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gong, SY., He, J. et al. Spatio-temporal assessments of rockburst hazard combining b values and seismic tomography. Acta Geophys. 65, 77–88 (2017). https://doi.org/10.1007/s11600-017-0008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0008-y

Keywords

Navigation