Skip to main content
Log in

Cornel Iridoid Glycoside Suppresses Hyperactivity Phenotype in rTg4510 Mice through Reducing Tau Pathology and Improving Synaptic Dysfunction

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

rTg4510 mice are transgenic mice expressing P301L mutant tau and have been developed as an animal model of tauopathies including Alzheimer’s disease (AD). Besides cognitive impairments, rTg4510 mice also show abnormal hyperactivity behavior. Cornel iridoid glycoside (CIG) is an active ingredient extracted from Cornus officinalis, a traditional Chinese herb. The purpose of the present study was to investigate the effects of CIG on the emotional disorders such as hyperactivity, and related mechanisms. The emotional hyperactivity was detected by locomotor activity test and Y maze test. Immunofluorescent and immunohistochemical analyses were conducted to measure neuron loss and phosphorylated tau. Western blotting was used to detect the expression of related proteins. The results showed that intragastric administration of CIG for 3 months decreased the hyperactivity phenotype, prevented neuronal loss, reduced tau hyperphosphorylation and aggregation in the amygdala of rTg4510 mice. Meanwhile, CIG alleviated the synaptic dysfunction by increasing the expression of N-methyl-D-aspartate receptors (NMDARs) subunits GluN1 and GluN2A and αamino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunits GluA1 and GluA2, and increased the level of phosphorylated Ca2+/calmodulin dependent protein kinase II α (p-CaMK IIα) in the brain of rTg4510 mice. In conclusion, CIG may have potential to treat the emotional disorders in tauopathies such as AD through reducing tau pathology and improving synaptic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol, 2016,12(1):15–27

    CAS  PubMed  Google Scholar 

  2. Tatsumi H, Nakaaki S, Torii K, et al. Neuropsychiatric symptoms predict change in quality of life of Alzheimer disease patients: a two-year follow-up study. Psychiatry Clin Neurosci, 2009,63(3): 374–384

    PubMed  Google Scholar 

  3. Pena-Casanova J, Sanchez-Benavides G, de Sola S, et al. Neuropsychology of Alzheimer’s disease. Arch Med Res, 2012,43(8):686–693

    PubMed  Google Scholar 

  4. Berger Z, Roder H, Hanna A, et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci, 2007,27(14): 3650–3662

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Santacruz K, Lewis J, Spires T, et al. Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function. Science, 2005,309(5733): 476–481

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kopeikina K J, Polydoro M, Tai H, et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol, 2013,521(6): 1334–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jul P, Volbracht C, de Jong IEM, et al. Hyperactivity with agitative-like behavior in a mouse tauopathy model. J Alzheimer Dis, 2015,49(3): 783–795

    Google Scholar 

  8. Brownlow ML, Joly-Amado A, Azam S, et al. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav Brain Res, 2014,271:79–88

    CAS  PubMed  Google Scholar 

  9. Cook C, Dunmore JH, Murray ME, et al. Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiol Aging, 2014,35(7): 1769–1777

    CAS  PubMed  Google Scholar 

  10. Koppel J, Jimenez H, Azose M, et al. Pathogenic tau species drive a psychosis-like phenotype in a mouse model of Alzheimer’s disease. Behav Brain Res, 2014,275:27–33

    CAS  PubMed  Google Scholar 

  11. Ma D, Wang N, Fan X, et al. Protective effects of cornel iridoid glycoside in rats after traumatic brain injury. Neurochem Res, 2018,43(4): 959–971

    CAS  PubMed  Google Scholar 

  12. Ma D, Zhu Y, Li Y, et al. Beneficial effects of cornel iridoid glycoside on behavioral impairment and senescence status in SAMP8 mice at different ages. Behav Brain Res, 2016,312:20–29

    CAS  PubMed  Google Scholar 

  13. Ma D, Luo Y, Huang R, et al. Cornel iridoid glycoside suppresses tau hyperphosphorylation and aggregation in a mouse model of tauopathy through increasing activity of PP2A. Curr Alzheimer Res, 2019,16(14): 1316–1331

    CAS  PubMed  Google Scholar 

  14. Yao R Q, Zhang L, Wang W, et al. Cornel iridoid glycoside promotes neurogenesis and angiogenesis and improves neurological function after focal cerebral ischemia in rats. Brain Res Bull, 2009,79(1): 69–76

    CAS  PubMed  Google Scholar 

  15. Folch J, Busquets O, Ettcheto M, et al. Memantine for the Treatment of Dementia: A Review on its Current and Future Applications. J Alzheimer Dis, 2018,62(3): 1223–1240

    CAS  Google Scholar 

  16. Dai C, Hu W, Tung YC, et al. Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice. Alzheimers Res Ther, 2018,10(1): 1–14

    Google Scholar 

  17. Zhang Y, Li P, Feng J, et al. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol Sci, 2016,37(7): 1039–1047

    PubMed  PubMed Central  Google Scholar 

  18. Apicco DJ, Ash PEA, Maziuk B, et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci, 2018,21(1):72–80

    CAS  PubMed  Google Scholar 

  19. Huang H, Nie S, Cao M, et al. Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice. AGE, 2016,38(4): 303–322

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshikawa M, Soeda Y, Michikawa M, et al. Tau depletion in APP transgenic mice attenuates task-related hyperactivation of the hippocampus and differentially influences locomotor activity and spatial memory. Front Neurosci-Switz, 2018,12:124

    Google Scholar 

  21. Cohen-Mansfield J, Billig N. Agitated behaviors in the elderly. I. A conceptual review. J Am Geriatr Soc, 1986,34(10):711–721

    CAS  PubMed  Google Scholar 

  22. Kong EH. Agitation in dementia: concept clarification. J Adv Nurs, 2005,52(5):526–536

    PubMed  Google Scholar 

  23. Millan-Calenti JC, Lorenzo-López L, Alonso-Búa B, et al. Optimal nonpharmacological management of agitation in Alzheimer’s disease: challenges and solutions. Clin Interv Aging, 2016,11:175–184

    PubMed  PubMed Central  Google Scholar 

  24. Tekin S, Mega MS, Masterman DM, et al. Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease. Ann Neurol, 2001,49(3): 355–361

    CAS  PubMed  Google Scholar 

  25. Milad MR, Rauch SL. The role of the orbitofrontal cortex in anxiety disorders. Ann N Y Acad Sci, 2007, 1121:546–561

    PubMed  Google Scholar 

  26. Guzmán-Vélez E, Warren DE, Feinstein JS, et al. Dissociable contributions of amygdala and hippocampus to emotion and memory in patients with Alzheimer’s disease. Hippocampus, 2016,26(6): 727–738

    PubMed  Google Scholar 

  27. Yang C, Li X, Gao W, et al. Cornel iridoid glycoside inhibits tau hyperphosphorylation via regulating cross-talk between GSK-3beta and PP2A signaling. Front Pharmacol, 2018, 9: 682

    PubMed  PubMed Central  Google Scholar 

  28. Di J, Cohen LS, Corbo CP, et al. Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep-UK, 2016, 6(1):1–12

    Google Scholar 

  29. Hoover BR, Reed MN, Su J, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 2010, 68(6):1067–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li XG, Hong XY, Wang YL, et al. Tau accumulation triggers STAT1-dependent memory deficits by suppressing NMDA receptor expression. EMBO Rep, 2019,20(6): 1–18

    Google Scholar 

  31. Alldred MJ, Duff KE, Ginsberg SD. Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction. Neurobiol Dis, 2012,45(2):751–762

    CAS  PubMed  Google Scholar 

  32. Zinebi F, Xie J, Liu J, et al. NMDA currents and receptor protein are downregulated in the amygdala during maintenance of fear memory. J Neurosci, 2003,23(32): 10283–10291

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kantrowitz JT, Javitt DC. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: The final common pathway on the road to schizophrenia? Brain Res Bull, 2010,83(3–4):108–121

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhai B, Shang X, Fu J, et al. Rapamycin relieves anxious emotion and synaptic plasticity deficits induced by hindlimb unloading in mice. Neurosci Lett, 2018,677:44–48

    CAS  PubMed  Google Scholar 

  35. Wang Y, Liu Q, Xie J, et al. Dcf1 affects memory and anxiety by regulating NMDA and AMPA receptors. Neurochem Res, 2019,44(11): 2499–2505

    CAS  PubMed  Google Scholar 

  36. Silva AJ, Paylor R, Wehner JM, et al. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science, 1992,257(5067): 206–211

    CAS  PubMed  Google Scholar 

  37. Stephenson JR, Wang X, Perfitt TL, et al. A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors. J Neurosci, 2017,37(8): 2216–2233

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ogundele OM, Lee CC. CaMKIIα expression in a mouse model of NMDAR hypofunction schizophrenia: Putative roles for IGF-1R and TLR4. Brain Res Bull, 2018,137:53–70

    CAS  PubMed  Google Scholar 

  39. Novak G, Seeman P. Hyperactive mice show elevated D2High receptors, a model for schizophrenia: Calcium/calmodulin-dependent kinase II alpha knockouts. Synapse, 2010, 64(10):794–800

    CAS  PubMed  Google Scholar 

  40. Yamagata Y, Kobayashi S, Umeda T, et al. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning. J Neurosci, 2009, 29(23):7607–7618

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Halt AR, Dallapiazza RF, Zhou Y, et al. CaMKII binding to GluN2B is critical during memory consolidation. EMBO J, 2012,31(5): 1203–1216

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Li or Lan Zhang.

Additional information

This research was supported by National Natural Science Foundation of China (Nos. 81473373, 81874351, 81673406), Capital Science and Technology Leading Talent Training Project (No. Z191100006119017), Beijing Hospitals Authority Ascent Plan (No. DFL20190803), and Cultivation Fund of Capital Medical University (No. PYZ19134).

Conflict of Interest Statement

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Dl., Luo, Y., Huang, R. et al. Cornel Iridoid Glycoside Suppresses Hyperactivity Phenotype in rTg4510 Mice through Reducing Tau Pathology and Improving Synaptic Dysfunction. CURR MED SCI 40, 1031–1039 (2020). https://doi.org/10.1007/s11596-020-2284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2284-z

Key words

Navigation