Skip to main content
Log in

The Role of RP105 in Cardiovascular Disease through Regulating TLR4 and PI3K Signaling Pathways

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Raidoprotective 105 (RP105) was first discovered on the surface of mouse B cells and it has been demonstrated that RP105 can function as an inflammatory regulator in cardiovascular disease (CVD), such as myocardial ischemic reperfusion injury (MI/RI), atherosclerosis and myocardial infarction (MI). As a member of Toll-like receptor (TLR) homolog which is capable of regulating toll-like receptor (TLR4) signaling pathway, RP105 is implicated in various biological processes. Mounting evidence suggests that RP105 regulates the function of TLR4 and phosphoinositide 3-kinase (PI3K) signaling pathways. Here, we review the effect of RP105 on CVD through regulating TLR4/PI3K signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miyake K, Yamashita Y, Ogata M, et al. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol, 1995,154(7):3333–3340

    CAS  PubMed  Google Scholar 

  2. Karper JC, de Jager SC, Ewing MM, et al. An Unexpected Intriguing Effect of Toll-Like Receptor Regulator RP105 (CD180) on Atherosclerosis Formation with Alterations on B-Cell Activation. Arteriosclerosis, Arterioscler Thromb Vasc Biol, 2013,33(12):2810–2817

    Article  CAS  PubMed  Google Scholar 

  3. Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol, 2002,3(7):667–672

    Article  CAS  PubMed  Google Scholar 

  4. Divanovic S, Trompette A, Petiniot LK, et al. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J Leukoc Biol, 2007,82(2):265–271

    Article  CAS  PubMed  Google Scholar 

  5. Ha T, Hua F, Liu X, et al. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc Res, 2008,78(3):546–553

    Article  CAS  PubMed  Google Scholar 

  6. Divanovic S, Trompette A, Atabani SF, et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol, 2005,6(6):571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akashi S, Shimazu R, Ogata H, et al. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol, 2000,164(7):3471–3475

    Article  CAS  PubMed  Google Scholar 

  8. Hoefer IE, van Royen N, Rectenwald JE, et al. Direct evidence for tumor necrosis factor-α signaling in arteriogenesis. Circulation, 2002,105(14):1639–1641

    Article  CAS  PubMed  Google Scholar 

  9. Yang J, Guo X, Yang J, et al. RP105 Protects against Apoptosis in Ischemia/Reperfusion-Induced Myocardial Damage in Rats by Suppressing TLR4-Mediated Signaling Pathways. Cell Physiol Biochem, 2015,36(6):2137–2148

    Article  CAS  PubMed  Google Scholar 

  10. Hreniuk D, Garay M, Gaarde W, et al. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol, 2001,59(4):867–874

    Article  CAS  PubMed  Google Scholar 

  11. Yang Z, Deng Y, Su D, et al. TLR4 as receptor for HMGB1-mediated acute lung injury after liver ischemia/reperfusion injury. Lab Invest, 2013,93(7):792–800

    Article  CAS  PubMed  Google Scholar 

  12. Yang CJ, Yang J, Yang J, et al. Radioprotective 105 kDa protein (RP105): is a critical therapeutic target for alleviating ischemia reperfusion induced myocardial damage via TLR4 signaling pathway. Int J Cardiol, 2016,222:1069–1070

    Article  PubMed  Google Scholar 

  13. Watanabe Y, Nagai Y, Takatsu K. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance. Nutrients, 2013,5(9):3757–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang J, Yang J, Ding JW, et al. Sequential expression of TLR4 and its effects on the myocardium of rats with myocardial ischemia-reperfusion injury. Inflammation, 2008,31(5):304–312

    Article  CAS  PubMed  Google Scholar 

  15. Jian J, Xuan F, Qin F, et al. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats. Drug Des Devel Ther, 2015,9:5933–5945

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bastiaansen AJ, Ewing MM, de Boer HC, et al. Lysine acetyltransferase PCAF is a key regulator of arteriogenesis. Arterioscler Thromb Vasc Biol, 2013,33(8):1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hillis LD, Lange RA. Myocardial infarction and the open-artery hypothesis. N Engl J Med, 2006,355(23):2475

    Article  CAS  PubMed  Google Scholar 

  18. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2001,2(8):675–680

    Article  CAS  PubMed  Google Scholar 

  19. Yang Z, Deng Y, Su D, et al. TLR4 as receptor for HMGB1-mediated acute lung injury after liver ischemia/reperfusion injury. Lab Invest, 2013,93(7):792–800

    Article  CAS  PubMed  Google Scholar 

  20. Ding HS, Yang J, Chen P, et al. The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene, 2013,527(1):389–393

    Article  CAS  PubMed  Google Scholar 

  21. Yang J, Chen L, Yang J, et al. MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats. Mol Biol Rep, 2014,41(1):555–561

    Article  CAS  PubMed  Google Scholar 

  22. Wezel A, de Vries MR, Maassen JM, et al. Deficiency of the TLR4 analogue RP105 aggravates vein graft disease by inducing a pro-inflammatory response. Sci Rep, 2016,6:24248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol, 2009,54(23):2129–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woollard KJ. Immunological aspects of atherosclerosis. Clin Sci, 2013,125(5):221–235

    Article  CAS  PubMed  Google Scholar 

  25. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med, 2011,17(11):1410–1422

    Article  CAS  PubMed  Google Scholar 

  26. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 2005,352(16): 1685–1695

    Article  CAS  PubMed  Google Scholar 

  27. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol, 2011,12(3):204–212

    Article  CAS  PubMed  Google Scholar 

  28. Michelsen KS, Wong MH, Shah PK, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A, 2004,101(29):10679–10684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding Y, Subramanian S, Montes VN, et al. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol, 2012,32(7):1596–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu Z, Zhang X, Li Y, et al. TLR4 antagonist reduces early-stage atherosclerosis in diabetic apolipoprotein E-deficient mice. J Endocrinol, 2013,216(1):61–71

    Article  CAS  PubMed  Google Scholar 

  31. Allen JL, Flick LM, Divanovic S, et al. Cutting edge: regulation of TLR4-driven B cell proliferation by RP105 is not B cell autonomous. J Immunol, 2012,188(5):2065–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gruber S, Hendrikx T, Tsiantoulas D, et al. Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells. Cell Rep, 2016,14(10):2348–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wezel A, Velden D, Maassen JM, et al. RP105 deficiency attenuates early atherosclerosis via decreased monocyte influx in a CCR2 dependent manner. Atherosclerosis, 2015,238(1):132–139

    Article  CAS  PubMed  Google Scholar 

  34. Lewis EF, Moye LA, Rouleau JL, et al. Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol, 2003,42(8):1446–1453

    Article  PubMed  Google Scholar 

  35. Timmers L, Sluijter JP, van Keulen JK, et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res, 2008,102(2):257–264

    Article  CAS  PubMed  Google Scholar 

  36. Frantz S, Kobzik L, Kim YD, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest, 1999,104(3):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arslan F, Smeets MB, Riem Vis PW, et al. Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res, 2011,108(5):582–592

    Article  CAS  PubMed  Google Scholar 

  38. Louwe MC, Karper JC, de Vries MR, et al. RP105 deficiency aggravates cardiac dysfunction after myocardial infarction in mice. Int J Cardiol, 2014,176(3):788–793

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Additional information

This study was supported by the National Natural Science Foundation of China (No. 81770360 and No. 81800258)

Conflict of Interest Statement

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zeng, P., Yang, J. et al. The Role of RP105 in Cardiovascular Disease through Regulating TLR4 and PI3K Signaling Pathways. CURR MED SCI 39, 185–189 (2019). https://doi.org/10.1007/s11596-019-2017-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-019-2017-3

Key words

Navigation