Skip to main content
Log in

A Panel of Genes Identified as Targets for 8q24.13-24.3 Gain Contributing to Unfavorable Overall Survival in Patients with Hepatocellular Carcinoma

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Copy number aberrations (CNAs) in chromosome arm 8q have been associated with unfavorable clinical outcomes of several cancers and progressive tumor characteristics of hepatocellular carcinoma (HCC). This study was to identify correlation of CNAs in 8q with clinical outcomes of HCC patients, and further screen for differentially expressed genes in outcome-related CNAs. Array comparative genomic hybridization and expression arrays were performed to detect CNAs and expression levels, respectively. The correlations between CNAs in 8q and outcomes were analyzed in 66 patients, with a median follow-up time of 45.0 months (range, 2.6-108.6 months). One hundred and nine cases were further evaluated to identify differentially expressed genes in the potential outcome-related CNAs. Copy number gain in 8q was observed in 22 (33.3%) of the 66 HCC cases. The most recurrent gains (with frequencies >20%) were 8q13.3-21.3,8q21.3-23.3,8q23.3-24.13,8q24.13-24.3, and 8q24.3. Survival analysis showed that 8q24.13-24.3 gain was significantly associated with reduced overall survival (jP=0.010). Multivariate Cox analysis identified 8q24.13-24.3 gain as an independent prognostic factor for poor overall survival (HR=2.47; 95% CI=1.16-5.26; Р=0.019). Apanel of 17 genes within the 8q24.13-24.3 region, including ATAD2,SQLE,PVT1,ASAP1, and NDRG1 were significantly upregulated in HCCs with 8q24.13-24.3 gain compared to those without. These results suggest that copy number gain at 8q24.13-24.3 is an unfavorable prognostic marker for HCC patients, and the potential oncogenes ATAD2,SQLE, PVT1, ASAP1,and NDRG1 within the regional gain, may contribute coordinately to the 8q24.13-24.3 gain-related poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. С A Cancer J Clin, 2016, 66(2):115–132

    Article  Google Scholar 

  2. Pinato DJ, Pirisi M, Maslen L, et al. Tissue biomarkers of prognostic significance in hepatocellular carcinoma. Adv Anat Pathol, 2014, 21(4):270–284

    Article  PubMed  CAS  Google Scholar 

  3. Shlien A, Maikin D. Copy number variations and cancer susceptibility. Curr Opin Oncol, 2010, 22(1):55–63

    Article  PubMed  CAS  Google Scholar 

  4. Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463(7283):899–905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Walker LC, McDonald M, Wells JE, et al. Dualcolor fluorescence in situ hybridization reveals an association of chromosome 8q22 but not 8p21 imbalance with high grade invasive breast carcinoma. PLoS One, 2013, 8(7):e70790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cheng I, Levin AM, Tai YC, et al. Copy number alterations in prostate tumors and disease aggressiveness. Genes Chromosomes Cancer, 2012, 51(1)r66–76

    Google Scholar 

  7. Vékony H, Roser K, Loning T, et al. Copy number gain at 8q12.1–q22.1 is associated with a malignant tumor phenotype in salivary gland myoepitheliomas. Genes Chromosomes Cancer, 2009, 48(2):202–212

    Article  PubMed  CAS  Google Scholar 

  8. Silva MP, Barros-Silva JD, Ersvaer E, et al. Cancer Prognosis Defined by the Combined Analysis of 8q, PTEN and ERG. Transi Oncol, 2016, 9(6):575–582

    Article  Google Scholar 

  9. Zafarana G, Ishkanian AS, Malloff CA, et al. Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer, 2012, 118(16):4053–4062

    Article  PubMed  CAS  Google Scholar 

  10. Yoshioka S, Tsukamoto Y, Hijiya N, et al. Genomic profiling of oral squamous cell carcinoma by arraybased comparative genomic hybridization. PLoS One, 2013, 8(2):e56165

  11. Munoz-Bellvis L, Fontanillo C, Gonzalez-Gonzalez M, et al. Unique genetic profile of sporadic colorectal cancer liver metastasis versus primary tumors as defined by high-density single-nucleotide p ymorphism arrays. Mod Pathol, 2012, 25(4):590–601

    Article  PubMed  CAS  Google Scholar 

  12. Boelens MC, Kok K, van der Vlies P, et al. Genomic aberrations in squamous cell lung carcinoma related to lymph node or distant metastasis. Lung Cancer, 2009, 66(3):372–378

    Article  PubMed  Google Scholar 

  13. Vincent-Chong VK, Salahshourifar I, Woo KM, et al. Genome wide profiling in oral squamous cell carcinoma identifies a four genetic marker signature of prognostic significance. PLoS One, 2017, 12(4):e0174865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Klatte T, Kroeger N, Rampersaud EN, et al. Gain of chromosome 8q is associated with metastases and poor survival of patients with clear cell renal cell carcinoma. Cancer, 2012, 118(23):5777–5782

    Article  PubMed  CAS  Google Scholar 

  15. El Gammal AT, Bruchmann M, Zustin J, et al. Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res, 2010, 16(1):56–64

    Article  PubMed  CAS  Google Scholar 

  16. Lagerstedt KK, Staaf J, Jonsson G, et al. Tumor genome wide DNA alterations assessed by array CGH in patients with poor and excellent survival following operation for colorectal cancer. Cancer Inform, 2007, 3:341–355

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schleicher C, Poremba C, Wolters H, et al. Gain of chromosome 8q: a potential prognostic marker in resectable adenocarcinoma of the pancreas? Ann Surg Oncol, 2007, 14(4):1327–1335

    Article  PubMed  Google Scholar 

  18. Milioli HH, Tishchenko I, Riveros C, et al. Basal-like breast cancer: molecular profiles, clinical features and survival outcomes. BMC Med Genomics, 2017, 10(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Okamoto H, Yasui K, Zhao C, et al PTK2 and EIF3 S3 genes may be amplification targets at 8q23–q24 and are associated with large hepatocellular carcinomas. Hepatology, 2003, 38(5):1242–1249

    Article  PubMed  CAS  Google Scholar 

  20. Chochi Y, Kawauchi S, Nakao M, et al. A copy number gain of the 6p arm is linked with advanced hepatocellular carcinoma: an array-based comparative genomic hybridization study. J Pathol, 2009, 217(5):677–684

    Article  PubMed  CAS  Google Scholar 

  21. Liu YJ, Zhou Y, Yeh MM. Recurrent genetic alterations in hepatitis C-associated hepatocellular carcinoma detected by genomic microarray: a genetic, clinical and pathological correlation study. Mol Cytogenet, 2014, 7(1):81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Versluis M, de Lange MJ, van Pelt SI, et al. Digital PCR validates 8q dosage as prognostic tool in uveal melanoma. PLoS One, 2015, 10(3):e0116371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Han S, Park K, Shin E, et al. Genomic change of chromosome 8 predicts the response to taxane-based neoadjuvant chemotherapy in node-positive breast cancer. Oncol Rep, 2010, 24(1):121–128

    PubMed  Google Scholar 

  24. Hwang HW, Ha SY, Bang H, et al ATAD2 as a Poor Prognostic Marker for Hepatocellular Carcinoma after Curative Resection. Cancer Res Treat, 2015, 47(4):853–861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wu G, Lu X, Wang Y, et al. Epigenetic high regulation of ATAD2 regulates the Hh pathway in human hepatocellular carcinoma. Int J Oncol, 2014, 45(1):351–361

    Article  PubMed  CAS  Google Scholar 

  26. Brown DN, Caffa I, Cirmena G, et al. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer. Sei Rep, 2016, 6:19435

    Article  CAS  Google Scholar 

  27. Zhang HY, Li HM, Yu Z, et al. Expression and significance of squalene epoxidase in squamous lung cancerous tissues and pericarcinoma tissues. Thorac Cancer, 2014, 5(4):275–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Colombo T, Farina L, Macino G, et al. PVT1: a rising star among oncogenic long noncoding RNAs. Biomed Res Int, 2015, 2015:304208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ding C, Yang Z, Lv Z, et al. Long non-coding RNA PVT1 is associated with tumor progression and predicts recurrence in hepatocellular carcinoma patients. Oncol Lett, 2015, 9(2):955–963

    Article  PubMed  Google Scholar 

  30. Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVTl as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett, 2017, 388:208–219

    Article  PubMed  CAS  Google Scholar 

  31. Song J, Wu X, Liu F, et al. Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun, 2017, 490(2):217–224

    Article  PubMed  CAS  Google Scholar 

  32. Huang C, Liu S, Wang H, et al LncRNA PVT1 overexpression is a poor prognostic biomarker and regulates migration and invasion in small cell lung cancer. Am J Transi Res, 2016, 8(ll):5025–5034

    CAS  Google Scholar 

  33. Muller T, Stein U, Poletti A, et al ASAP1 promotes tumor cell motility and invasiveness, stimulates metastasis formation in vivo, and correlates with poor survival in colorectal cancer patients. Oncogene, 2010, 29(16):2393–2403

    Article  PubMed  CAS  Google Scholar 

  34. Li M, Tian L, Yao H et al. ASAP1 mediates the invasive phenotype of human laryngeal squamous cell carcinoma to affect survival prognosis. Oncol Rep, 2014, 31(6):2676–2682

    Article  PubMed  CAS  Google Scholar 

  35. Hou T, Yang C, Tong C, et al. Overexpression of ASAP1 is associated with poor prognosis in epithelial ovarian cancer. Int J Clin Exp Pathol, 2014, 7(1):280–287

    PubMed  Google Scholar 

  36. Song Y, Cao L. N-myc downstream-regulated gene 1: Diverse and complicated functions in human hepatocellular carcinoma (Review). Oncol Lett, 2013, 6(6):1539–1542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cheng J, Xie HY, Xu X, et al NDRG1 as a biomarker for metastasis, recurrence and of poor prognosis in hepatocellular carcinoma. Cancer Lett, 2011, 310(1):35–45

    Article  PubMed  CAS  Google Scholar 

  38. Shen JY, Li C, Wen TF, et al. Alpha fetoprotein changes predict hepatocellular carcinoma survival beyond the Milan criteria after hepatectomy. J Surg Res, 2017, 209:102–111

    Article  PubMed  CAS  Google Scholar 

  39. Sun L, Liu T, Zhang S, et al. Oct4 induces EMT through LEF1/beta-catenin dependent WNT signaling pathway in hepatocellular carcinoma. Oncol Lett, 2017, 13(4):2599–2606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Katkoori VR, Shanmugam C, Jia X, et al. Prognostic significance and gene expression profiles of p53 mutations in microsatellite-stable stage III colorectal adenocarcinomas. PLoS One, 2012, 7(1):e30020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Zheng Zhu or Qing Xu.

Additional information

This project was supported by grants from the Medical Science and Technology Innovation Fund of PLA, Nanjing branch, China (No. 14ZD07; 08MA023) and Ningbo Nature Science Foundation Program (No. 2009A610126).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Zhao, Y., Zhu, Jy. et al. A Panel of Genes Identified as Targets for 8q24.13-24.3 Gain Contributing to Unfavorable Overall Survival in Patients with Hepatocellular Carcinoma. CURR MED SCI 38, 590–596 (2018). https://doi.org/10.1007/s11596-018-1918-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1918-x

Key words

Navigation