Skip to main content
Log in

p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Idiopathic pulmonary fibrosis (IPF) is characterized by myofibroblast foci in lung parenchyma. Myofibroblasts are thought to originate from epithelial-to-mesenchymal transition (EMT). Wnt1 and lithium chloride (LiCl) induce EMT in alveolar epithelial cells (AECs), but the mechanisms are unclear. AECs were treated with Wnt1 and LiCl, respectively; morphological change and molecular changes of EMT, including E-cadherin, fibronectin, and vimentin, were observed. SB203580 was administrated to test the role of p38 МАРК signaling in EMT. Then AECs were treated with siRNAs targeting p38 МАРК to further test the effects of p38 МАРК, and the role was further confirmed by re-expression of p38 МАРК. At last P-catenin siRNA was used to test the role of β-catenin in the EMT process and relationship of β-catenin and p38 МАРК was concluded. Exposure of AECs to Wnt1 and LiCl resulted in upregulation of vimentin and fibronectin with subsequent downregulation of E-cadherin. Wnt1 and LiCl stimulated the p38 МАРК signaling pathways. Perturbing the p38 МАРК pathway either by SB203580 or through p38 МАРК siRNA blocked EMT and inhibited fibronetin synthesis, which were reversed by transfection of p38 МАРК expression plasmid. β-catenin siRNA attenuated the EMT process and decreased p38 МАРК phosphorylation, indicating that β-catenin is involved in the EMTrelated changes through regulation of p38 МАРК phosphorylation. These findings suggest that p38 МАРК participates in the pathogenesis of EMT through Wnt pathway and that p38 МАРК may be a novel target for IPF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Travis WD, Costabel U, Hansell DM, et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med, 2013,188(6):733–748

    Article  PubMed  PubMed Central  Google Scholar 

  2. Olson AL, Swigris JJ. Idiopathic pulmonary fibrosis: diagnosis and epidemiology. Clin Chest Med, 2012,33(1):41–50

    Article  PubMed  Google Scholar 

  3. King TE, Jr., Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet, 2011,378(9807):1949–1961

    Article  PubMed  Google Scholar 

  4. Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA, 2006,103(35): 13180–13185

    Article  PubMed  CAS  Google Scholar 

  5. Betensley A, Sharif R, Karamichos D. A Systematic Review of the Role of Dysfunctional Wound Healing in the Pathogenesis and Treatment of Idiopathic Pulmonary Fibrosis. J Clin Med, 2016,6(1):2

    Article  PubMed Central  CAS  Google Scholar 

  6. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech, 2010,43(1): 146–155

    Article  PubMed  Google Scholar 

  7. Rock JR, Barkauskas CE, Cronce MJ, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA, 2011,108(52):E1475–1483

    Article  PubMed  Google Scholar 

  8. Tanjore H, Xu XC, Polosukhin W, et al. Contribution of epithelial-derived fibroblasts to bleomycininduced lung fibrosis. Am J Respir Crit Care Med, 2009,180(7):657–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li LF, Lee CS, Lin CW, et al. Trichostatin A attenuates ventilation-augmented epithelial-mesenchymal transition in mice with bleomycin-induced acute lung injury by suppressing the Akt pathway. PLoS one, 2017,12(2):e0172571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Moon RT, Kohn AD, De Ferrari GV, et al. Wnt and beta-catenin signalling: diseases and therapies. Nat Rev Genet, 2004,5(9):691–701

    Article  PubMed  CAS  Google Scholar 

  11. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem, 2006,281(32):22429–22433

    Article  PubMed  CAS  Google Scholar 

  12. Wang C, Zhu H, Sun Z, et al. Inhibition of Wnt/betacatenin signaling promotes epithelial differentiation of mesenchymal stem cells and repairs bleomycininduced lung injury. Am J Physiol-Cell Ph, 2014,307(3):C234–244

    Article  CAS  Google Scholar 

  13. Konigshoff M, Balsara N, Pfaff EM, et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One, 2008,3(5):e2142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang Y, Li YP, Paulson C, et al. Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark edition), 2014,19:379–407

    Article  CAS  Google Scholar 

  15. Kawami M, Harabayashi R, Miyamoto M, et al. Methotrexate-Induced Epithelial-Mesenchymal Transition in the Alveolar Epithelial Cell Line A549. Lung, 2016,194(6):923–930

    Article  PubMed  CAS  Google Scholar 

  16. Mikami Y, Yamauchi Y, Horie M, et al. Tumor necrosis factor superfamily member LIGHT induces epithelial-mesenchymal transition in A549 human alveolar epithelial cells. Biochem Biophys Res Commun, 2012,428(4):451–457

    Article  PubMed  CAS  Google Scholar 

  17. Choi JH, Hwang YP, Kim HG, et al. Saponins from the roots of Platycodon grandiflorum suppresses TGFbetal-induced epithelial-mesenchymal transition via repression of PI3K/Akt, ERK1/2 and Smad2/3 pathway in human lung carcinoma A549 cells. Nutr Cancer, 2014,66(1):140–151

    Article  PubMed  CAS  Google Scholar 

  18. Kawata M, Koinuma D, Ogami T, et al. TGF-betainduced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by proinflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem, 2012,151(2):205–216

    Article  PubMed  CAS  Google Scholar 

  19. Feng H, Liu Q, Zhang N, et al. Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells. Oncol Res, 2014,21(3):165–171

    Article  CAS  Google Scholar 

  20. Desai S, Laskar S, Pandey BN. Autocrine IL-8 and VEGF mediate epithelial-mesenchymal transition and invasiveness via p38/JNK-ATF-2 signalling in A549 lung cancer cells. Cell Signal, 2013,25(9):1780–1791

    Article  PubMed  CAS  Google Scholar 

  21. Bikkavilli RK, Feigin ME, Malbon CC. Galpha o mediates Wnt-JNK signaling through dishevelled 1 and 3, RhoA family members, and MEKK 1 and 4 in mammalian cells. J Cell Sei, 2008,121(Pt 2):234–245

    Article  CAS  Google Scholar 

  22. Zheng X, Wang Y, Liu B, et al. Bmi-1 -shRNA inhibits the proliferation of lung adenocarcinoma cells by blocking the Gl/S phase through decreasing cyclin D1 and increasing p21/p27 levels. Nucleic Acid Ther, 2014,24(3):210–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Huang J, Xiao D, Li G, et al. EphA2 promotes epithelial-mesenchymal transition through the Wnt/beta-catenin pathway in gastric cancer cells. Oncogene, 2014,33(21):2737–2747

    Article  PubMed  CAS  Google Scholar 

  24. Song P, Zheng JX, Liu JZ, et al. Effect of the Wntl/beta-catenin signalling pathway on human embryonic pulmonary fibroblasts. Mol Med Report, 2014,10(2): 1030–1036

    Article  CAS  Google Scholar 

  25. Wei J, Li Z, Chen W, et al. AEG-1 participates in TGF-betal-induced EMT through p38 MAPK activation. Cell Biol Int, 2013,37(9):1016–1021

    Article  PubMed  CAS  Google Scholar 

  26. Jing YM, Luo J, Zhang YL, et al. Construction of a recombinant lentiviral vector of p38 MAPK and establishment of a human prostatic carcinoma cell line stably expressing p38 MAPK. Nan Fang Yi Ke DaXue Xue Bao (Chinese), 2012,32(3):317–321

    CAS  Google Scholar 

  27. Daccord C, Mäher TM. Recent advances in understanding idiopathic pulmonary fibrosis. FlOOORes, 2016,5:F1000 Faculty Rev-1046

    Google Scholar 

  28. Raghu G, Rochwerg B, Zhang Y, et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med, 2015,192(2):e3–el9

    PubMed  Google Scholar 

  29. Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med, 2001,134(2):136–151

    Article  PubMed  CAS  Google Scholar 

  30. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal, 2014,7(344):re8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest, 2009,119(6): 1420–1428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Min AL, Choi JY, Woo HY, et al. High expression of Snail mRNA in blood from hepatocellular carcinoma patients with extra-hepatic metastasis. Clin Exp Metastasis, 2009,26(7):759–767

    Article  PubMed  CAS  Google Scholar 

  33. Nawshad A, Hay ED. TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol, 2003,163(6):1291–1301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelialmesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000,2(2):76–83

    Article  PubMed  CAS  Google Scholar 

  35. Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol, 2004,48(5-6):365–375

    Article  PubMed  CAS  Google Scholar 

  36. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004,117(7):927–939

    Article  PubMed  CAS  Google Scholar 

  37. Zhang J, Tian XJ, Xing J. Signal Transduction Pathways of EMT Induced by TGF-beta, SHH, and Wnt and Their Crosstalks. J Clin Med, 2016,5(4):E41

    Article  PubMed  CAS  Google Scholar 

  38. Bruno NE, Kelly KA, Hawkins R, et al. Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO J, 2014,33(9): 1027–1043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Song P, Zheng JX, Xu J, et al. Beta-catenin induces A549 alveolar epithelial cell mesenchymal transition during pulmonary fibrosis. Mol Med Red, 2015,11 (4):2703–2710

    Article  CAS  Google Scholar 

  40. Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond. Front Immunol, 2016,7:635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ramos C, Montano M, Garcia-Alvarez J, et al. Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol, 2001,24(5):591–598

    Article  PubMed  CAS  Google Scholar 

  42. Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis, 2008,25(6):657–663

    Article  PubMed  CAS  Google Scholar 

  43. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer sternness and malignant behavior. Curr Opin Cell Biol, 2007,19(2): 150–158

    Article  PubMed  CAS  Google Scholar 

  44. Stemmer V, de Craene B, Berx G, et al. Snail promotes Wnt target gene expression and interacts with betacatenin. Oncogene, 2008,27(37):5075–5080

    Article  PubMed  CAS  Google Scholar 

  45. Yook JI, Li XY, Ota I, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail 1 activity in breast cancer cells. Nat Cell Biol, 2006,8(12):1398–1406

    Article  PubMed  CAS  Google Scholar 

  46. Takenaka K, Kise Y, Miki H. GSK3beta positively regulates Hedgehog signaling through Sufii in mammalian cells. Biochem Biophys Res Commun, 2007,353(2):501–508

    Article  PubMed  CAS  Google Scholar 

  47. Noubissi FK, Goswami S, Sanek NA, et al. Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res, 2009,69(22):8572–8578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Caraci F, Gili E, Calafiore M, et al. TGF-betal targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res, 2008,57(4):274–282

    Article  PubMed  CAS  Google Scholar 

  49. Guo X, Ramirez A, Waddell DS, et al. Axin and GSK3-control Smad3 protein stability and modulate TGF-signaling. Genes Dev, 2008,22(1):106–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang Y, Dong C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol Life Sci, 2007,64(21):2771–2789

    Article  PubMed  CAS  Google Scholar 

  51. Xia JM, Zhang J, Zhou WX, et al. Downregulation of p38 MAPK involved in inhibition of LDL-induced proliferation of mesangial cells and matrix by curcumin. J Huazhong Univ Sci Technolog Med Sci, 2013,33(5):666–671

    Article  PubMed  CAS  Google Scholar 

  52. Xiao Y, Zou P, Wang J, et al. Lower phosphorylation of p38 MAPK blocks the oxidative stress-induced senescence in myeloid leukemic CD34(+)CD38 (-) cells. J Huazhong Univ Sci Technolog Med Sci, 2012, 32(3):328–333

    Article  PubMed  CAS  Google Scholar 

  53. Cervenka I, Wolf J, Masek J, et al. Mitogen-activated protein kinases promote Wnt/beta-catenin signaling via phosphorylation of LRP6. Mol Cell Biol, 2011,31(1):179–189

    Article  PubMed  CAS  Google Scholar 

  54. Jin EJ, Lee SY, Choi YA, et al. BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway. Mol Cells, 2006,22(3):353–359

    PubMed  CAS  Google Scholar 

  55. Thornton TM, Pedraza-Alva G, Deng B, et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science, 2008,320(5876):667–670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Abell AN, Granger DA, Johnson GL. MEKK4 stimulation of p38 and JNK activity is negatively regulated by GSK3beta. J Biol Chem, 2007,282(42):30476–30484

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Cx., Ma, Cm., Jiang, L. et al. p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition. CURR MED SCI 38, 473–481 (2018). https://doi.org/10.1007/s11596-018-1903-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1903-4

Key words

Navigation