Skip to main content
Log in

Abstract

Renal cell cancer (RCC) remains one of the most lethal types of cancer in adults. MicroRNAs (miRNAs) play key roles in the pathogenesis of RCC. The role of miR-206 in RCC has not been fully understood. The purpose of this study was to examine the role of miR-206 in the regulation of proliferation and metastasis of RCC and the possible mechanism. miR-206 expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in RCC cell lines (786-O and OS-RC-2 cells) and clinical samples. MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] method, colony formation and transwell assay were used to detect the tumor-suppressing ability of miR-206 in RCC. Luciferase assay was performed to verify the precise target of miR-206. The results showed that the expression of miR-206 was significantly down-regulated in RCC tissues and cells. The expression level of cyclin G-associated kinase (GAK), a master regulator of tumor proliferation and metastasis, was up-regulated with the decrease in miR-206 in RCC tissues as well as RCC cell lines. In addition, the miR-206 inhibitor promoted the proliferation, migration and invasion of 786-O and OS-RC-2 cells. Bioinformatics combined with luciferase and Western blot assays revealed that miR-206 inhibited the expression of GAK. Moreover, miR-206 regulates RCC cell growth partly through targeting GAK. Our study indicated that miR-206 functions as a tumor suppressor in regulating the proliferation, migration and invasion of RCC by directly targeting GAK, and it holds promises as a potential therapeutic target for RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhavan A, Richards M, Shnorhavorian M, et al. Renal cell carcinoma in children, adolescents and young adults: a National Cancer Database study. J urol, 2015,193(4):1336–1341

    Article  PubMed  Google Scholar 

  2. Kapoor A. What’s new in renal cell cancer research? Highlights of GU-ASCO 2015. Can Urol Assoc J, 2015,9(5-6Suppl3):S154–S155

    Article  PubMed  PubMed Central  Google Scholar 

  3. White NM, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med, 2010,8:65

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol, 2001,166(5):1611–1623

    Article  CAS  PubMed  Google Scholar 

  5. Qin X, Zhang H, Ye D, et al. B7-H3 is a new cancer-specific endothelial marker in clear cell renal cell carcinoma. Onco Targets Ther, 2013,6:1667–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009,136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li WY, Chen XM, Xiong W, et al. Detection of microvesicle miRNA expression in ALL subtypes and analysis of their functional roles. J Huazhong Univ Sci Technolog Med Sci, 2014,34(5):640–645

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Kim J, Mueller AC, et al. Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death Differ, 2014,21(5):720–734

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yin J, Park G, Lee JE, et al. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain, 2015,138(Pt 9):2553–2570

    Article  PubMed  Google Scholar 

  10. Li X, Liu Y, Granberg KJ, et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene, 2015,34(13):1619–1628

    Article  CAS  PubMed  Google Scholar 

  11. Dai S, Wang X, Li X, et al. MicroRNA-139-5p acts as a tumor suppressor by targeting ELTD1 and regulating cell cycle in glioblastoma multiforme. Biochem Biophys Res Commun, 2015,467(2):204–210

    Article  CAS  PubMed  Google Scholar 

  12. Sun P, Sun D, Wang X, et al. miR-206 is an independent prognostic factor and inhibits tumor invasion and migration in colorectal cancer. Cancer Biomark, 2015,15(4):391–396

    Article  CAS  PubMed  Google Scholar 

  13. Ge X, Lyu P, Cao Z, et al. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun, 2015,463(4):1115–1121

    Article  CAS  PubMed  Google Scholar 

  14. Panwalkar P, Moiyadi A, Goel A, et al. MiR-206, a cerebellum enriched miRNA is downregulated in all medulloblastoma subgroups and its overexpression is necessary for growth inhibition of medulloblastoma cells. J Mol Neurosci, 2015,56(3):673–680

    Article  CAS  PubMed  Google Scholar 

  15. Yu WF, Wang HM, Lu BC, et al. miR-206 inhibits human laryngeal squamous cell carcinoma cell growth by regulation of cyclinD2. Eur Rev Med Pharmacol Sci, 2015,19(14):2697–2702

    CAS  PubMed  Google Scholar 

  16. Zhang L, Xia L, Zhao L, et al. Activation of PAX3-MET pathways due to miR-206 loss promotes gastric cancer metastasis. Carcinogenesis, 2015,36(3):390–399

    Article  PubMed  Google Scholar 

  17. Kanaoka Y, Kimura SH, Okazaki I, et al. GAK: a cyclin G associated kinase contains a tensin/auxilin-like domain. FEBS Lett, 1997,402(1):73–80

    Article  CAS  PubMed  Google Scholar 

  18. Greener T, Zhao X, Nojima H, et al. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J Biol Chem, 2000,275(2):1365–1370

    Article  CAS  PubMed  Google Scholar 

  19. Zhang CX, Engqvist-Goldstein AE, Carreno S, et al. Multiple roles for cyclin G-associated kinase in clathrin-mediated sorting events. Traffic, 2005,6(12):1103–1113

    Article  CAS  PubMed  Google Scholar 

  20. Sakurai MA, Ozaki Y, Okuzaki D, et al. Gefitinib and luteolin cause growth arrest of human prostate cancer PC-3 cells via inhibition of cyclin G-associated kinase and induction of miR-630. PLoS One, 2014,9(6):e100124

    Article  Google Scholar 

  21. Sun W, Lv W, Lv H, et al. Genome-wide haplotype association analysis identifies SERPINB9, SERPINE2, GAK, and HSP90B1 as novel risk genes for oral squamous cell carcinoma. Tumour Biol, 2016,37(2):1845–1851

    Article  CAS  PubMed  Google Scholar 

  22. Susa M, Choy E, Liu X, et al. Cyclin G-associated kinase is necessary for osteosarcoma cell proliferation and receptor trafficking. Mol Cancer Ther, 2010,9(12):3342–3350

    Article  CAS  PubMed  Google Scholar 

  23. Zoni E, van der Horst G, van de Merbel AF, et al. miR-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of alphav-and alpha6-integrin expression. Cancer Res, 2015,75(11):2326–2336

    Article  CAS  PubMed  Google Scholar 

  24. Que T, Song Y, Liu Z, et al. Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene, 2015,34(38):4952–4963

    Article  CAS  PubMed  Google Scholar 

  25. Du M, Shi D, Yuan L, et al. Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer. Sci Rep, 2015,5:10437

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang YJ, Xu F, Zhang YJ, et al. miR-206 inhibits non small cell lung cancer cell proliferation and invasion by targeting SOX9. Int J Clin Exp Med, 2015,8(6):9107–9113

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen QY, Jiao DM, Wang J, et al. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget, 2016,21:8229

    Google Scholar 

  28. Wang XW, Xi XQ, Wu J, et al. MicroRNA-206 attenuates tumor proliferation and migration involving the downregulation of NOTCH3 in colorectal cancer. Oncol Rep, 2015,33(3):1402–1410

    PubMed  Google Scholar 

  29. Kimura SH, Tsuruga H, Yabuta N, et al. Structure, expression, and chromosomal localization of human GAK. Genomics, 1997,44(2):179–187

    Article  CAS  PubMed  Google Scholar 

  30. Ahle S, Ungewickell E. Auxilin, a newly identified clathrin-associated protein in coated vesicles from bovine brain. J Cell Biol, 1990,111(1):19–29

    Article  CAS  PubMed  Google Scholar 

  31. Ray MR, Wafa LA, Cheng H, et al. Cyclin G-associated kinase: a novel androgen receptor-interacting transcriptional coactivator that is overexpressed in hormone refractory prostate cancer. Int J Cancer, 2006,118(5):1108–1119

    Article  CAS  PubMed  Google Scholar 

  32. Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 2007,26:4148–4157

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-qiang Chen  (陈志强).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Wang, S., Ye, Zq. et al. miR-206 inhibits renal cell cancer growth by targeting GAK. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 852–858 (2016). https://doi.org/10.1007/s11596-016-1674-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1674-8

Keywords

Navigation