Skip to main content
Log in

Three-dimensional localization of impacted canines and root resorption assessment using cone beam computed tomography

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The purpose of this study was to develop a new way to localize the impacted canines from three dimensions and to investigate the root resorption of the adjacent teeth by using cone beam computed tomography (CBCT). Forty-six patients undergoing orthodontic treatments and having impacted canines in Tongji Hospital were examined. The images of CBCT scans were obtained from KaVo 3D exam vision. Angular and linear measurements of the cusp tip and root apex according to the three planes (mid-sagittal, occlusal and frontal) have been taken using the cephalometric tool of the InVivo Dental Anatomage Version 5.1.10. The measurements of the angular and linear coordinates of the maxillary and mandibular canines were obtained. Using this technique the operators could envision the location of the impacted canine according to the three clinical planes. Adjacent teeth root resorption of 28.26 % was in the upper lateral incisors while 17.39% in upper central incisors, but no lower root resorption was found in our samples. Accurate and reliable localization of the impacted canines could be obtained from the novel analysis system, which offers a better surgical and orthodontic treatment for the patients with impacted canines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thilander B, Jakobsson SO. Local factors in impaction of maxillary canines. Acta Odontol Scand, 1968, 26(1–2): 145–168.

    Article  CAS  PubMed  Google Scholar 

  2. Preda L, La Fianza A, Di Maggio EM, et al. The use of spiral computed tomography in the localization of impacted maxillary canines. Dento Maxillofac Radiol, 1997, 26(4):236–241

    Article  CAS  Google Scholar 

  3. Walker L, Enciso R, Mah J. Three-dimensional localization of maxillary canines with cone-beam computed tomography. Am J Orthod Dentofacial Orthop, 2005, 128(4): 418–423

    Article  PubMed  Google Scholar 

  4. Mason C, Papadakou P, Roberts GJ. The radiographic localization of impacted maxillary canines: a comparison of methods. Eur J Orthod, 2001, 23(1):25–34

    Article  CAS  PubMed  Google Scholar 

  5. Rossini G, Cavallini C, Cassetta M, et al. Localization of impacted maxillary canines using cone beam computed tomography. Review of literature. Ann Stomatol (Roma), 2012, 3(1):14–18

    Google Scholar 

  6. Elefteriadis JN, Athanasiou AE. Evaluation of impacted canines by means of computerized tomography. Int J Adult Orthodon Orthognath Surg, 1996, 11(3):257–264

    CAS  PubMed  Google Scholar 

  7. Ericson S, Kurol J. Resorption of maxillary lateral incisors caused by ectopic eruption of the canines. Am J Orthod Dentofacial Orthop, 1988, 94(6):503–513

    Article  CAS  PubMed  Google Scholar 

  8. Peck S, Peck L, Kataja M. The palatally displaced canine as a dental anomaly of genetic origin. Angle Orthod, 1994, 64(4):249–256

    CAS  PubMed  Google Scholar 

  9. Jacobs SG. The impacted maxillary canine. Further observations on aetiology, radiographic localization, prevention/interception of impaction, and when to suspect impaction. Aust Dent J, 1996, 41(5):310–316

    Article  CAS  PubMed  Google Scholar 

  10. Montelius GA. Impacted teeth. A comparative study of Chinese and Caucasian dentitions. J Dent Res, 1932, 12(6): 931–938

    Article  Google Scholar 

  11. Bishara SE. Impacted maxillary canines: A review. Am J Orthodentofacial Orthop, 1992, 101(2):159–171

    Article  CAS  Google Scholar 

  12. Ericson S, Kurol J. Incisor root resorption due to ectopic maxillary canines imaged by computerized tomography: a comparative study in extracted teeth. Angle Orthod, 2000, 70(4):276–283

    CAS  PubMed  Google Scholar 

  13. Ericosn S, Bjerklin K, Falahat B. Does the canine dental follicle cause resorption of permanent root? A computed tomography study of erupting maxillary canines. Angle Orthod, 2002, 72(2):95–104

    Google Scholar 

  14. Ericson S, Bjerklin K. The dental follicle in normally and ectopically erupting maxillary canines: a computed tomography study. Angle Orthod, 2001, 71(5):333–342

    CAS  PubMed  Google Scholar 

  15. Waitzman AA, Posnick JC, Armstrong DC, et al. Craniofacial skeletal measurements based on computed tomography: part II. Normal values and growth trends. Cleft Palate Craniofac J, 1992, 29(2):118–128

    Article  CAS  PubMed  Google Scholar 

  16. Ericson S, Kurol J. CT diagnosis of ectopically erupting maxillary canines-a case report. Eur J Orthod, 1988, 10(1):115–121

    Article  CAS  PubMed  Google Scholar 

  17. Bodner L, Bar-Ziv J, Becker A. Image accuracy of plain film radiography and computerized tomography in assessing morphological abnormality of impacted teeth. Am J Orthod Dentofacial Orthop, 2001, 120(6):623–628

    Article  CAS  PubMed  Google Scholar 

  18. Boeddinghaus R, Whyte A. Current concepts in maxilla facial imaging. Eur J Radiol, 2008, 66(3):396–418

    Article  PubMed  Google Scholar 

  19. Lou L, Lagravere MO, Compton S, et al. Accuracy of measurements and reliability of landmark identification with computed tomography (CT) techniques in the maxillofacial area: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 104(3):402–411

    Article  PubMed  Google Scholar 

  20. Berco M, Rigali PH Jr, Miner RM, et al. Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofacial Orthop, 2009, 136(1):17. e1–17.e9

    Google Scholar 

  21. Olszewski R, Reychler H, Cosnard G, et al. Accuracy of three-dimensional (3D) craniofacial cephalometric landmarks on a low-dose 3D computed tomograph. Dentomaxillofac Radiol, 2008, 37(5):261–267

    Article  CAS  PubMed  Google Scholar 

  22. Nagpal A, Pai KM, Setty S, et al. Localization of impacted maxillary canines using panoramic radiography. J Oral Sci, 2009, 51(1):37–45

    Article  PubMed  Google Scholar 

  23. Botticelli S, Verna C, Cattaneo PM, et al. Two-versus three-dimensional imaging in subjects with unerupted maxillary canines. Eur J Ortho, 2011, 33(4):344–349

    Article  Google Scholar 

  24. Tomasi C, Bressan E, Corazza B, et al. Reliability and reproducibility of linear mandible measurements with the use of a cone-beam computed tomography and two object inclinations. Dentomaxillofac Radiol, 2011, 40(4): 244–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Santos Tde S, Gomes AC, de Melo DG, et al. Evaluation of reliability and reproducibility of linear measurements of cone-beam-computed tomography. Indian J Dent Res, 2012, 23(4):473–478

    Article  PubMed  Google Scholar 

  26. Ericson S, Kurol J. Resorption of incisors after ectopic eruption of maxillary canines: a CT study. Angle Orthod, 2000, 70(6):415–423

    CAS  PubMed  Google Scholar 

  27. Hassan B, Nijkamp P, Verheij H, et al. Precision of identifying cephalometric landmarks with cone beam computed tomography in vivo. Eur J Orthod, 2013, 35(1): 38–44

    Article  PubMed  Google Scholar 

  28. Chien PC, Parks ET, Eraso F, et al. Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and threer-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol, 2009, 38(5):262–273

    Article  CAS  PubMed  Google Scholar 

  29. Ludlow JB, Gubler M, Cevidanes L, et al. Precision of cephalometric landmark identification: Cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop, 2009, 136(3):312. e1–312. e10

    Google Scholar 

  30. Katkar RA, Kummet C, Dawson D, et al. Comparison of observer reliability of three-dimensional cephalometric landmark identification on subject images from Galileos and i-CAT cone beam CT. Dentomaxillofac Radiol, 2013, 42(9):20130059

    Article  CAS  PubMed  Google Scholar 

  31. Zamora N, Llamas JM, Cibrián R, et al. A study on the reproducibility of cephalometric landmarks when undertaking a three-dimensional (3D) cephalometric analysis. Med Oral Patol Oral Cir Bucal, 2012, 17(4):678–688

    Article  Google Scholar 

  32. Liu DG, Zhang WL, Zhang ZY, et al. Three dimensional evaluations of supernumerary teeth using cone-beam computed tomography for 487 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103(3):403–411

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Mao  (毛 靖).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almuhtaseb, E., Mao, J., Mahony, D. et al. Three-dimensional localization of impacted canines and root resorption assessment using cone beam computed tomography. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 425–430 (2014). https://doi.org/10.1007/s11596-014-1295-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1295-z

Key words

Navigation