Skip to main content
Log in

Association of controlled ovarian hyperstimulation treatment with down-regulation of key regulators involved in embryonic implantation in mice

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The debate exists whether or not gonadotropin-releasing hormone (GnRH) analogs used in controlled ovarian hyperstimulation (COH) impair endometrial receptivity. Homeobox A11 (Hoxa11), Meis homeobox 1 (Meis1), cadherin 1 (Cdh1), and catenin beta 1 (Ctnnb1) are well known to be involved in successful implantation. In this study, the endometrial expression of Hoxa11, Meis1, Cdh1, and Ctnnb1 during the peri-implantation period was investigated in an in vitro fertilization (IVF) mouse model by real-time RT-PCR and Western blot to evaluate the relationship between Hoxa11, Meis1, Cdh1, and Ctnnb1 expression and the impact of the COH on endometrial receptivity. The mimic COH protocols included GnRH agonist plus human menopausal gonadotropin (HMG) (GnRH agonist group), GnRH antagonist plus HMG (GnRH antagonist group), and HMG alone (HMG group). The expression levels of Hoxa11, Meis1, Cdh1, and Ctnnb1 mRNA and protein were decreased in all of the COH groups. The expression levels of Hoxa11 and Ctnnb1 were the lowest in the GnRH agonist group, and those of Meis1 and Cdh1 were lower in the GnRH analog groups than the HMG group. There were positive correlations between the expression of Hoxa11 and Ctnnb1, as well as the expression of Meis1 and Cdh1 among all the groups. In conclusion, the COH protocols, particularly with GnRH analogs, suppressed Hoxa11, Meis1, Ctnnb1 and Cdh1 expression, in mouse endometrium during the peri-implantation period. Our data reveal a novel molecular mechanism by which the COH protocols might impair endometrial receptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santos MA, Kuijk EW, Macklon NS. The impact of ovarian stimulation for IVF on the developing embryo. Reproduction, 2010,139(1):23–34

    Article  PubMed  CAS  Google Scholar 

  2. Smitz J, Devroey P, Camus M, et al. The luteal phase and early pregnancy after combined GnRH-agonist/HMG treatment for superovulation in IVF or GIFT. Hum Reprod, 1988,3(5):585–590

    PubMed  CAS  Google Scholar 

  3. Griesinger G, Felberbaum R, Diedrich K. GnRH-antag onists in reproductive medicine. Arch Gynecol Obstet, 2005,273(2):71–78

    Article  PubMed  CAS  Google Scholar 

  4. Hayden C. GnRH analogues: applications in assisted reproductive techniques. Eur J Endocrinol, 2008, 159(Suppl 1):S17–S25

    Article  PubMed  CAS  Google Scholar 

  5. Kolibianakis EM, Kalogeropoulou L, Griesinger G, et al. Among patients treated with FSH and GnRH analogues for in vitro fertilization, is the addition of recombinant LH associated with the probability of live birth? A systematic review and meta-analysis. Hum Reprod Update, 2007,13:(5):445–452

    Article  PubMed  CAS  Google Scholar 

  6. Tarlatzis BC, Kolibianakis EM. GnRH agonists vs antagonists. Best Pract Res Clin Obstet Gynaecol, 2007, 21(1):57–65

    Article  PubMed  CAS  Google Scholar 

  7. Andersen AN, Gianaroli L, Felberbaum R, et al. Assisted reproductive technology in Europe, 2001. Results generated from European registers by ESHRE. Hum Reprod, 2005,20(5):1158–1176

    Article  PubMed  Google Scholar 

  8. Nygren KG, Andersen AN. Assisted reproductive technology in Europe, 1997. Results generated from European registers by ESHRE. European IVF-Monitoring Programme (EIM), for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod, 2001,16(2):384–391

    Article  PubMed  CAS  Google Scholar 

  9. Diedrich K, Fauser BC, Devroey P, et al. The role of the endometrium and embryo in human implantation. Hum Reprod Update, 2007,13(4):365–377

    Article  PubMed  CAS  Google Scholar 

  10. Check JH, Nowroozi K, Chase J, et al. Comparison of pregnancy rates following in vitro fertilization-embryo transfer between the donors and the recipients in a donor oocyte program. J Assist Reprod Genet, 1992,9(3): 248–250

    Article  PubMed  CAS  Google Scholar 

  11. Stafford-Bell MA, Copeland CM. Surrogacy in Australia: implantation rates have implications for embryo quality and uterine receptivity. Reprod Fertil Dev, 2001,13(1): 99–104

    Article  PubMed  CAS  Google Scholar 

  12. Behrsin RF, da Silva Junior CT, Gabetto JM, et al. Lung volume reduction surgery (LVRS): criteria for selecting patient in Antonio Pedro Hospital, Federal Fluminense University, Niter i city, Rio de Janeiro, Brazil. Rev Assoc Med Bras, 2003,49(3):274–277

    Article  PubMed  Google Scholar 

  13. Fauser BC, Devroey P. Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab, 2003,14(5):236–242

    Article  PubMed  CAS  Google Scholar 

  14. Simon C, Cano F, Valbuena D, et al. Clinical evidence for a detrimental effect on uterine receptivity of high serum oestradiol concentrations in high and normal responder patients. Hum Reprod, 1995,10(9):2432–2437

    PubMed  CAS  Google Scholar 

  15. van der Gaast MH, Classen-Linke I, Krusche CA, et al. Impact of ovarian stimulation on mid-luteal endometrial tissue and secretion markers of receptivity. Reprod Biomed Online, 2008,17(4):553–563

    Article  PubMed  Google Scholar 

  16. Haouzi D, Assou S, Dechanet C, et al. Controlled ovarian hyperstimulation for in vitro fertilization alters endometrial receptivity in humans: protocol effects. Biol Reprod, 2010,82(4):679–686

    Article  PubMed  CAS  Google Scholar 

  17. Koler M, Achache H, Tsafrir A, et al. Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum Reprod, 2009,24(10):2541–2548

    Article  PubMed  CAS  Google Scholar 

  18. Mansouri-Attia N, Aubert J, Reinaud P, et al. Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol Genomics, 2009, 39(1):14–27

    Article  PubMed  CAS  Google Scholar 

  19. Ruan HC, Zhu XM, Luo Q, et al. Ovarian stimulation with GnRH agonist, but not GnRH antagonist, partially restores the expression of endometrial integrin beta3 and leukaemia-inhibitory factor and improves uterine receptivity in mice. Hum Reprod, 2006,21(10):2521–2529

    Article  PubMed  CAS  Google Scholar 

  20. Van Vaerenbergh I, Van Lommel L, Ghislain V, et al. In GnRH antagonist/rec-FSH stimulated cycles, advanced endometrial maturation on the day of oocyte retrieval correlates with altered gene expression. Hum Reprod, 2009,24(5):1085–1091

    Article  PubMed  Google Scholar 

  21. Zhang X, Bocca S, Franchi A, et al. Do GnRH analogues directly affect human endometrial epithelial cell gene expression? Mol Hum Reprod, 2010,16(5):347–60

    Article  PubMed  CAS  Google Scholar 

  22. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell, 1992,68(2):283–302

    Article  PubMed  CAS  Google Scholar 

  23. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod, 1997,57(6): 1338–1345

    Article  PubMed  CAS  Google Scholar 

  24. Taylor HS. A regulatory element of the empty spiracles homeobox gene is composed of three distinct conserved regions that bind regulatory proteins. Mol Reprod Dev, 1998,49(3):246–253

    Article  PubMed  CAS  Google Scholar 

  25. Taylor HS, Igarashi P, Olive DL, et al. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocr Metab, 1999,84(3):1129–1135

    Article  PubMed  CAS  Google Scholar 

  26. Gendron RL, Paradis H, Hsieh-Li HM, et al. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol Reprod, 1997,56(5):1097–1105

    Article  PubMed  CAS  Google Scholar 

  27. Taylor HS. The role of HOX genes in the development and function of the female reproductive tract. Semin Reprod Med, 2000,18(1):81–89

    Article  PubMed  CAS  Google Scholar 

  28. Hsieh-Li HM, Witte DP, Weinstein M, et al. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development, 1995,121(5): 1373–1385

    PubMed  CAS  Google Scholar 

  29. Argiropoulos B, Yung E, Humphries RK. Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. Genes Dev, 2007,21(22):2845–2849

    Article  PubMed  CAS  Google Scholar 

  30. Sarno JL, Kliman HJ, Taylor HS. HOXA10, Pbx2, and Meis1 protein expression in the human endometrium: Formation of multimeric complexes on HOXA10 target genes. J Clin Endocr Metab, 2005,90(1):522–528

    Article  PubMed  CAS  Google Scholar 

  31. Xu B, Geerts D, Qian K, et al. Myeloid ecotropic viral integration site 1 (MEIS) 1 involvement in embryonic implantation. Hum Reprod, 2008,23(6):1394–1406

    Article  PubMed  CAS  Google Scholar 

  32. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update, 2006,12(6):731–746

    Article  PubMed  Google Scholar 

  33. Ozawa M, Engel J, Kemler R. Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell, 1990,63(5):1033–1038

    Article  PubMed  CAS  Google Scholar 

  34. Ozawa M, Kemler R. Molecular organization of the uvomorulin-catenin complex. J Cell Biol, 1992,116(4):989–996

    Article  PubMed  CAS  Google Scholar 

  35. Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet, 1993,9(9):317–321

    Article  PubMed  CAS  Google Scholar 

  36. Rosales C, O’Brien V, Kornberg L, et al. Signal transduction by cell adhesion receptors. Biochim Biophys Acta, 1995,1242(1):77–98

    PubMed  Google Scholar 

  37. Fujimoto J, Sakaguchi H, Hirose R, et al. Significance of sex steroids in roles of cadherin subfamily and its related proteins in the uterine endometrium and placenta. Horm Res, 1998,50(Suppl 2):S30–S36

    Article  Google Scholar 

  38. Larue L, Ohsugi M, Hirchenhain J, et al. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA, 1994,91(17):8263–8267

    Article  PubMed  CAS  Google Scholar 

  39. Ohsugi M, Butz S, Kemler R. Beta-catenin is a major tyrosine-phosphorylated protein during mouse oocyte maturation and preimplantation development. Dev Dyn, 1999,216(2):168–176

    Article  PubMed  CAS  Google Scholar 

  40. Paria BC, Zhao XM, Das SK, et al. Zonula occludens-1 and E-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization. Dev Biol, 1999,208(2):488–501

    Article  PubMed  CAS  Google Scholar 

  41. Jeong JW, Lee HS, Franco HL, et al. beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene, 2009,28(1):31–40

    Article  PubMed  CAS  Google Scholar 

  42. Deutscher E, Yao HH-C. Essential roles of mesenchyme-derived Beta-catenin in mouse Müllerian duct morphogenesis. Dev Biol, 2007,307(2):227–236

    Article  PubMed  CAS  Google Scholar 

  43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  44. Chegini N, Rong H, Dou Q, et al. Gonadotropin-releasing hormone (GnRH) and GnRH receptor gene expression in human myometrium and leiomyomata and the direct action of GnRH analogs on myometrial smooth muscle cells and interaction with ovarian steroids in vitro. J Clin Endocrinol Metab, 1996,81(9):3215–3221

    Article  PubMed  CAS  Google Scholar 

  45. Cheon KW, Lee HS, Parhar IS, et al. Expression of the second isoform of gonadotrophin-releasing hormone (GnRH-II) in human endometrium throughout the menstrual cycle. Mol Hum Reprod, 2001,7(5):447–452

    Article  PubMed  CAS  Google Scholar 

  46. Grundker C, Gunthert AR, Millar RP, et al. Expression of gonadotropin-releasing hormone II (GnRH-II) receptor in human endometrial and ovarian cancer cells and effects of GnRH-II on tumor cell proliferation. J Clin Endocrinol Metab, 2002,87(3):1427–1430

    Article  PubMed  CAS  Google Scholar 

  47. Raga F, Casan EM, Kruessel JS, et al. Quantitative gonadotropin-releasing hormone gene expression and immunohistochemical localization in human endometrium throughout the menstrual cycle. Bio Reprod, 1998,59(3): 661–669

    Article  CAS  Google Scholar 

  48. Dey SK. Focus on implantation. Reproduction, 2004, 128(6):655–656

    Article  PubMed  CAS  Google Scholar 

  49. Cakmak H, Taylor HS. Molecular mechanisms of treatment resistance in endometriosis: The role of progesterone-Hox gene interactions. Semin Reprod Med, 2010, 28(1):69–74

    Article  PubMed  CAS  Google Scholar 

  50. Sarno J, Schatz F, Huang SJ, et al. Thrombin and interleukin-1beta decrease HOX gene expression in human first trimester decidual cells: implications for pregnancy loss. Mol Hum Reprod, 2009,15(7):451–457

    Article  PubMed  CAS  Google Scholar 

  51. Ertzeid G, Storeng R. The impact of ovarian stimulation on implantation and fetal development in mice. Hum Reprod, 2001,16(2):221–225

    Article  PubMed  CAS  Google Scholar 

  52. Fossum GT, Davidson A, Paulson RJ. Ovarian hyperstimulation inhibits embryo implantation in the mouse. J In Vitro Fert Embryo Transf, 1989,6(1):7–10

    Article  PubMed  CAS  Google Scholar 

  53. Singh H, Aplin JD. Adhesion molecules in endometrial epithelium: tissue integrity and embryo implantation. J Anat, 2009,215(1):3–13

    Article  PubMed  CAS  Google Scholar 

  54. Wang X, Matsumoto H, Zhao X, et al. Embryonic signals direct the formation of tight junctional permeability barrier in the decidualizing stroma during embryo implantation. J Cell Sci, 2004,117(Pt 1):53–62

    Article  PubMed  CAS  Google Scholar 

  55. Konac E, Alp E, Onen HI, et al. Endometrial mRNA expression of matrix metalloproteinases, their tissue inhibitors and cell adhesion molecules in unexplained infertility and implantation failure patients. Reprod Biomed Online, 2009,19(3):391–397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijin Zhu  (朱桂金).

Additional information

This project was supported by a grant from the Major State Basic Research Development Program of China (973 Program) (No. 2007-CB948100).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, M., Zhang, H., Jin, L. et al. Association of controlled ovarian hyperstimulation treatment with down-regulation of key regulators involved in embryonic implantation in mice. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31, 535–542 (2011). https://doi.org/10.1007/s11596-011-0486-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-011-0486-0

Key words

Navigation