Skip to main content
Log in

Thickness Dependence of Structural and Optical Properties of Chromium Thin Films as an Infrared Reflector for Solar-thermal Conversion Applications

  • Advanced material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Usmani B, Vijay V, Chhibber C, et al. Optimization of Sputtered Zirconium Thin Films as an Infrared Reflector for Use in Spectrally-selective Solar Absorbers[J]. Thin Solid Films, 2017, 627: 17–25

    Article  CAS  Google Scholar 

  2. Sibin KP, John S, Barshilia HC. Control of Thermal Emittance of Stainless Steel Using Sputtered Tungsten Thin Films for Solar Thermal Power Applications[J]. Sol. Energy Mater. Sol. Cells, 2015, 133: 1–7

    Article  CAS  Google Scholar 

  3. Lopez A, Roberts B, Heimiller D, et al. U.S. Renewable Energy Technical Potentials: a GISBased Analysis[R]. National Renewable Energy laboratory, Golden, CO, 2012

    Google Scholar 

  4. Sampathkumar K, Arjunan TV, Pitchandi P, et al. Active Solar Distillation-a Detailed Review[J]. Renewable Sustainable Energy Rev., 2010, 14(6): 1 503–1 526

    Article  CAS  Google Scholar 

  5. Chen B, Zhuang Z, Chen X, et al. Field Survey on Indoor Thermal Environment of Rural Residences with Coupled Chinese Kang and Passive Solar Collecting Wall Heating in Northeast China[J]. Sol. Energy, 2007, 81(6): 781–790

    Article  CAS  Google Scholar 

  6. Feng JX, Zhang S, Lu Y, et al. The Spectral Selective Absorbing Characteristics and Thermal Stability of SS/TiAlN/TiAlSiN/Si3N4 Tandem Absorber Prepared by Magnetron Sputtering[J]. Sol. Energy, 2015, 111: 350–356

    Article  CAS  Google Scholar 

  7. Rebouta L, Capela P, Andritschky M, et al. Characterization of TiAlSiN/TiAlSiON/SiO2 Optical Stack Designed by Modelling Calculations for Solar Selective Applications[J]. Sol. Energy Mater. Sol. Cells, 2012, 105: 202–207

    Article  CAS  Google Scholar 

  8. Gelin K, Boström T, Wäckelgård E. Thermal Emittance of Sputter Deposited Infrared Reflectors in Spectrally Selective Tandem Solar Absorbers[J]. Sol. Energy, 2004, 77(1): 115–119

    Article  CAS  Google Scholar 

  9. Feng JX, Zhang S, Liu X, et al. Solar Selective Absorbing Coatings TiN/TiSiN/SiN Prepared on Stainless Steel Substrates[J]. Vacuum, 2015, 121: 135–141

    Article  CAS  Google Scholar 

  10. Barshilia HC, Kumar P, Rajam KS, et al. Structure and Optical Properties of Ag-Al2O3 Nanocermet Solar Selective Coatings Prepared Using Unbalanced Magnetron Sputtering[J]. Sol. Energy Mater. Sol. Cells, 2011, 95(7): 1 707–1 715

    Article  CAS  Google Scholar 

  11. Nuru ZY, Arendse CJ, Nemutudi R, et al. Pt-Al2O3 Nanocoatings for High Temperature Concentrated Solar Thermal Power Applications[J]. Phys. B (Amsterdam, Neth.), 2012, 407(10): 1 634–1 637

    Article  CAS  Google Scholar 

  12. Zheng LQ, Zhou FY, Zhou ZD, et al. Angular Solar Absorptance and Thermal Stability of Mo–SiO2 Double Cermet Solar Selective Absorber Coating[J]. Sol. Energy, 2015, 115: 341–346

    Article  CAS  Google Scholar 

  13. Valleti K, Krishna DM, Joshi SV. Functional Multi-layer Nitride Coatings for High Temperature Solar Selective Applications[J]. Sol. Energy Mater. Sol. Cells, 2014, 121: 14–21

    Article  CAS  Google Scholar 

  14. Liu HD, Fu TR, Duan MH, et al. Structure and Thermal Stability of Spectrally Selective Absorber Based on AlCrON Coating for Solar-thermal Conversion Applications[J]. Sol. Energy Mater. Sol. Cells, 2016, 157: 108–116

    Article  CAS  Google Scholar 

  15. Valleti K, Krishna DM, Reddy PM, et al. High Temperature Stable Solar Selective Coatings by Cathodic Arc PVD for Heat Collecting Elements[J]. Sol. Energy Mater. Sol. Cells, 2016, 145: 447–453

    Article  CAS  Google Scholar 

  16. Wang XB, Zhang XM, Li QY, et al. Spectral Properties of Al-CrNO-based Multi-layer Solar Selective Absorbing Coating during the Initial Stage of Thermal Aging upon Exposure to Air[J]. Sol. Energy Mater. Sol. Cells, 2018, 185: 81–92

    Article  CAS  Google Scholar 

  17. Liu HD, Wan Q, Lin BZ, et al. The Spectral Properties and Thermal Stability of CrAlO-based Solar Selective Absorbing Nanocomposite Coating[J]. Sol. Energy Mater. Sol. Cells, 2014, 122: 226–232

    Article  CAS  Google Scholar 

  18. Sun XL, Hong RJ, Hou HH, et al. Thickness Dependence of Structure and Optical Properties of Silver Films Deposited by Magnetron Sputtering[ J]. Thin Solid Films, 2007, 515(17): 6 292–6 966

    Article  Google Scholar 

  19. Selvakumar N, Barshilia HC. Review of Physical Vapor Deposited (PVD) Spectrally Selective Coatings for Mid- and High-temperature Solar Thermal Applications[J]. Sol. Energy Mater. Sol. Cells, 2012, 98: 1–23

    Article  CAS  Google Scholar 

  20. Zhao YH, Xu L, Guo CQ, et al. Effect of Axial Magnetic Field on the Microstructure and Mechanical Properties of CrN Films Deposited by Arc Ion Plating[J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(7): 688–696

    Article  Google Scholar 

  21. Fan QX, Wang TG, Liu YM, et al. Microstructure and Corrosion Resistance of the AlTiN Coating Deposited by Arc Ion Plating[J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(12): 1 119–1 126

    Article  CAS  Google Scholar 

  22. Fan QX, Zhang JJ, Wu ZH, et al. Influence of Al Content on the Microstructure and Properties of the CrAlN Coatings Deposited by Arc Ion Plating[J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(12): 1 221–1 230

    Article  CAS  Google Scholar 

  23. Theiss M. Scout Thin Film Analysis Software Handbook[M]. Hard And Software For Optical Spectroscopy, Aachen, Germany, 2012

    Google Scholar 

  24. NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database 20, Version 4.1 [EB/OL]. 2012

    Google Scholar 

  25. Zhu BL, Zhu SJ, Wang J, et al. Thickness Effect on Structure and Properties of ZAO Thin Films by RF Magnetron Sputtering at Different Substrate Temperatures[J]. Phys. E Low-Dimensional Syst. Nanostructures, 2011, 43: 1 738–1 745

    Article  CAS  Google Scholar 

  26. Sun H, Zhu X, Yang D, et al. Morphological and Structural Evolution during Thermally Physical Vapor Phase Growth of PbI2 Polycrystalline Thin Films[J]. J. Cryst. Growth, 2014, 405: 29–34

    Article  CAS  Google Scholar 

  27. Zak AK, Majid WHA, Abrishami ME, et al. X-ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size-strain Plot Methods[J]. Solid State Sci., 2011, 13(1): 251–256

    Article  Google Scholar 

  28. Mote V, Purushotham Y, Dole B. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-sized ZnO Particles[J]. J. Theor. Appl. Phys., 2012, 6: 1–8

    Article  Google Scholar 

  29. Tagliente MA, Massaro M. Strain-driven (002) Preferred Orientation of ZnO Nanoparticles in Ion-implanted Silica[J]. Nucl. Instrum Methods Phys. Res. B., 2008, 266(7): 1 055–1 061

    Article  CAS  Google Scholar 

  30. Daniel R, Hole D, Bartosik M, et al. Size Effect of Thermal Expansion and Thermal/Intrinsic Stresses in Nanostructured Thin Films: Experiment and Model[J]. Acta Mater., 2011, 59(17): 6 631–6 645

    Article  CAS  Google Scholar 

  31. Modest MF. Radiative Heat Transfer[M]. 3rd ed. Academic Press, New York, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Cheng  (程旭东).

Additional information

Funded by the National Natural Science Foundation of China (No. 51402208 ), and the Project by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (No. 2016-KF-11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Gong, D. & Cheng, X. Thickness Dependence of Structural and Optical Properties of Chromium Thin Films as an Infrared Reflector for Solar-thermal Conversion Applications. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1239–1247 (2019). https://doi.org/10.1007/s11595-019-2184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2184-x

Keywords

Navigation