Skip to main content

Advertisement

Log in

Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Composite nanofiber membranes based on biodegradable poly(lactic acid) (PLA) and cellulose nanofibrils (CNF) were produced via electrospinning. The influence of CNF content on the morphology, thermal properties, and mechanical properties of PLA/CNF composite nanofiber membranes were characterized by field scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA), respectively. The results show that the PLA/CNF composite nanofibers with smooth, free-bead surface can be successfully fabricated with various CNF contents. The introduction of CNF is an effective approach to improve the crystalline ability, thermal stability and mechanical properties for PLA/CNF composite fibers. The Young’s moduli and tensile strength of the PLA/CNF composite nanofiber reach 106.6 MPa and 2.7 MPa when the CNF content is 3%, respectively, which are one times higher and 1.5 times than those of pure PLA nanofiber. Additionally, the water contact angle of PLA/CNF composite nanofiber membranes decreases with the increase of the CNF loading, resulting in the enhancement of their hydrophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng Z X, Li H F, Sun Z Z, et al. Fabrication of Mineralized Electrospun PLGA and PLGA/gelatin Nanofibers and Their Potential in Bone Tissue Engineering[J]. Mat. Sci. Eng. C–Mater., 2013, 33(2): 699–706

    Article  Google Scholar 

  2. Wang G, Hu X, Lin W, et al. Electrospun PLGA–silk Fibroin–collagen Nanofibrous Scaffolds for Nerve Tissue Engineering[J]. In Vitro Cell. Dev–An., 2011, 47(3): 234–240

    Article  Google Scholar 

  3. Chen H L, Huang J, Yu J H, et al. Electrospun Chitosan–graft–poly(epsilon–caprolactone)/Poly(epsilon–caprolactone) Cationic Nanofibrous Mats as Potential Scaffolds for Skin Tissue Engineering[J]. Int. J. Biol. Macromol., 2011, 48(1): 13–19

    Article  Google Scholar 

  4. Yin G B, Zhang Y Z, Wang S D, et al. Study of the Electrospun PLA/Silk Fibroin–gelatin Composite Nanofibrous Scaffold for Tissue Engineering[J]. J. Biomed. Mater. Res. A, 2010, 93(1): 158–163

    Google Scholar 

  5. Lee W Y, Cheng W Y, Yeh Y C, et al. Magnetically Directed Selfassembly of Electrospun Superparamagnetic Fibrous Bundles to Form Three–dimensional Tissues with a Highly Ordered Architecture[J]. Tissue Eng. Pt. C–Meth., 2011, 17(6): 651–661

    Article  Google Scholar 

  6. Poursamar S A, Hatami J L, Alexander N, et al. Gelatin Porous Scaffolds Fabricated Using a Modified Gas Foaming Technique: Characterisation and Cytotoxicity Assessment[J]. Mat. Sci. Eng. C, 2015, 48: 63–70

    Article  Google Scholar 

  7. Diba M, Fathi M H, Kharaziha M. Novel Forsterite/Polycaprolactone Nanocomposite Scaffold for Tissue Engineering Applications[J]. Mater. Lett., 2011, 65(12): 1 931–1 934

    Article  Google Scholar 

  8. Mannella G A, Conoscenti G, Carfi Pavia F, et al. Preparation of Polymeric Foams with a Pore Size Gradient via Thermally Induced Phase Separation(TIPS)[J]. Mater. Lett., 2015, 160: 31–33

    Article  Google Scholar 

  9. Hernandez–cordova R, Mathew D A, Balint R, et al. Indirect Threedimensional Rrinting: A Method for Fabricating Polyurethane–urea Based Cardiac Scaffolds[J]. Biomed. Mater. Res. A, 2016, 104(8): 1 912–1 921

    Article  Google Scholar 

  10. Chen M C, Sun Y C, Chen Y H. Electrically Conductive Nanofibers with Highly Oriented Structures and Their Potential Application in Skeletal Muscle Tissue Engineering[J]. Acta Biomater., 2013, 9(3): 5 562–5 572

    Article  Google Scholar 

  11. Wei G, Li C, Fu Q, et al. Preparation of PCL/silk Fibroin/Collagen Electrospun Fiber for Urethral Reconstruction[J]. Int. Urol. Nephrol., 2015, 47(1): 95–99

    Article  Google Scholar 

  12. Vaz C M, Van Tuijl S, Bouten C V C, et al. Design of Scaffolds for Blood Vessel Tissue Engineering Using a Multi–layering Electrospinning Technique[J]. Acta Biomater., 2005, 1(5): 575–582

    Article  Google Scholar 

  13. Paskiabi F A, Mirzaei E, Amani A, et al. Optimizing Parameters on Alignment of PCL/PGA Nanofibrous Scaffold: An Artificial Neural Networks Approach[J]. Int. J. Biol. Macromol., 2015, 81: 1 089–1 097

    Article  Google Scholar 

  14. Zong X, Bien H, Chung C Y, et al. Electrospun Fine–textured Scaffolds for Heart Tissue Constructs. Biomaterials, 2005, 26(26): 5 330–5 338

    Article  Google Scholar 

  15. Rockwood D N, Akins–Jr R E, Parrag I C, et al. Culture on Electrospun Polyurethane Scaffolds Decreases Atrial Natriuretic Peptide Expression by Cardiomyocytes in Vitro[J]. Biomaterials, 2008, 29(36): 4 783–4 791

    Article  Google Scholar 

  16. Yong C S, Lee J H, Jin L, et al. Stimulated Myoblast Differentiation on Graphene Oxide–impregnated PLGA–Collagen Hybrid Fibre Matrices[J]. J. Nanobiotechno., 2015, 13(1): 1–11

    Article  Google Scholar 

  17. Han J J, Lazarovici P, Pomerantz C, et al. Co–electrospun Blends of PLGA, Gelatin, and Elastin as Potential Nonthrombogenic Scaffolds for Vascular Tissue Engineering[J]. Biomacromolecules, 2011, 12(2): 399–408

    Article  Google Scholar 

  18. Rajzer I, Rom M, Menaszek E, et al. Conductive PANI Patterns on Electrospun PCL/Gelatin Scaffolds Modified with Bioactive Particles for Bone Tissue Engineering[J]. Mater. Lett., 2015, 138: 60–63

    Article  Google Scholar 

  19. Ji Y, Liang K, Shen X, et al. Electrospinning and Characterization of Chitin Nanofibril/Polycaprolactone Nanocomposite Fiber Mats[J]. Carbohyd. Polym., 2014, 101: 68–74

    Article  Google Scholar 

  20. Atila D, Keskin D, Tezcaner A. Cellulose Acetate Based 3–dimensional Electrospun Scaffolds for Skin Tissue Engineering Applications[J]. Carbohyd. Polym., 2015, 133: 251–261

    Article  Google Scholar 

  21. Jing X, Mi H Y, Wang X C, et al. Shish–kebab–structured Poly(epsilon–caprolactone) Nanofibers Hierarchically Decorated with Chitosan–poly(epsilon–caprolactone) Copolymers for Bone Tissue Engineering[J]. ACS Appl. Mater. Inter., 2015, 7(12): 6 955–6 965

    Article  Google Scholar 

  22. Shao S, Zhou S, Li L, et al. Osteoblast Function on Electrically Conductive Electrospun PLA/MWCNTs Nanofibers[J]. Biomaterials, 2011, 32(11): 2 821–2 833

    Article  Google Scholar 

  23. Lin C C, Fu S J, Lin Y C, et al. Chitosan–coated Electrospun PLA Fibers for Rapid Mineralization of Calcium Phosphate[J]. Int. J. Biol. Macromol., 2014, 68: 39–47

    Article  Google Scholar 

  24. Abdul–Khalil H P S, Bhat A H, Ireana–Yusra A F. Green Composites from Sustainable Cellulose Nanofibrils: A Review[J]. Carbohyd. Polym., 2012, 87(2): 963–979

    Article  Google Scholar 

  25. Zoppe J O, Peresin M S, Habibi Y, et al. Reinforcing Poly(ε–caprolactone) Nanofibers with Cellulose Nanocrystals[J]. ACS Appl. Mater. Inter., 2009, 1(9): 1 996–2 004

    Article  Google Scholar 

  26. Mandal A, Chakrabarty D. Studies on the Mechanical, Thermal, Morphological and Barrier Properties of Nanocomposites Based on Poly(vinyl alcohol) and Nanocellulose from Sugarcane Bagasse[J]. J. Ind. Eng. Chem, 2014, 20(2): 462–473

    Article  Google Scholar 

  27. Mo Y, Guo R, Liu J, et al. Preparation and Properties of PLGA Nanofiber Membranes Reinforced with Cellulose Nanocrystals[J]. Colloid. Surface. B, 2015, 132:177–184

    Article  Google Scholar 

  28. Zamani M, Morshed M, Varshosaz J, et al. Controlled Release of Metronidazole Benzoate from Poly ε–caprolactone Electrospun Nanofibers for Periodontal Diseases[J]. Eur. J. Pharm. Biopharm., 2010, 75(2): 179–185

    Article  Google Scholar 

  29. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, et al. Effect of Solvents on Electro–spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers[J]. Eur. Polym. J., 2005, 41(3): 409–421

    Article  Google Scholar 

  30. Shalumon K T, Anulekha K H, Girish C M, et al. Effect of Solvents on Electro–spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers[J]. Carbohyd. Polym., 2010, 80(2): 413–419

    Article  Google Scholar 

  31. Zulkifli F H, Hussain F S, Rasad M S, et al. Nanostructured Materials from Hydroxyethyl Cellulose for Skin Tissue Engineering[J]. Carbohyd. Polym., 2014, 114: 238–245

    Article  Google Scholar 

  32. Alemdar A, Sain M. Isolation and Characterization of Nanofibers from Agricultural Residues–wheat Straw and Soy Hulls[J]. Bioresource Technol., 2008, 99(6): 1 664–1 671

    Article  Google Scholar 

  33. Saeidlou S, Huneault M A, Li H, et al. Evidence of a Dual Network/Spherulitic Crystalline Morphology in PLA Stereocomplexes[J]. Polymer, 2012, 53(25): 5 816–5 824

    Article  Google Scholar 

  34. Zhao H, Cui Z, Sun X, et al. Morphology and Properties of Injection Molded Solid and Microcellular Polylactic Acid/Polyhydroxybutyratevalerate(PLA/PHBV) Blends[J]. Ind. Eng. Chem. Res., 2013, 52(7): 2 569–2 581

    Article  Google Scholar 

  35. Benhamou K, Kaddami H, Magnin A, et al. Bio–based Polyurethane Reinforced with Cellulose Nanofibers: A Comprehensive Investigation on the Effect of Interface[J]. Carbohyd. Polym., 2015, 122: 202–211

    Article  Google Scholar 

  36. Xu Z, Niu Y, Yang L, et al. Morphology, Rheology and Crystallization Behavior of Polylactide Composites Prepared Through Addition of Five–armed Star Polylactide Grafted Multiwalled Carbon Nanotubes[J]. Polymer, 2010, 51(3): 730–737

    Article  Google Scholar 

  37. Sambudi N S, Sathyamurthy M, Lee G M, et al. Electrospun Chitosan/Poly(vinyl alcohol) Reinforced with CaCO3 Nanoparticles with Enhanced Mechanical Properties and Biocompatibility for Cartilage Tissue Engineering[J]. Compos. Sci. Technol., 2015, 106: 76–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Si  (司军辉).

Additional information

Funded by the Outstanding Young Scientific Research Personnel Training Plan in Colleges and Universities of Fujian Province (No. GY-Z160146), the Research Fund of Fujian University of Technology (Nos. GY-Z15091, GY-Z160121), the External Cooperative Projects of Fujian Province (No. 2018I0001), the Young Teachers Education Research Project (No. JAT170377) and Fujian Province Undergraduate Training Program for Innovation and Entrepreneurship (No. 201810388048)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Li, X., Si, J. et al. Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 207–215 (2019). https://doi.org/10.1007/s11595-019-2037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2037-7

Key words

Navigation