Skip to main content

Advertisement

Log in

Synthesis and Properties of Non-isocyanate Crystallizable Aliphatic Thermoplastic Polyurethanes

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A simple non-isocyanate route synthesizing thermoplastic polyurethanes (TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate with 1,4-butanediol and 1,6-hexanediol was conducted at different molar ratios under the catalysis of tetrabutyl titanate. A series of crystallizable non-isocyanate TPUs with high molecular weight were prepared. The TPUs were characterized by gel permeation chromatography, FT-IR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, AFM, and tensile tests. The TPUs exhibited Mn ranging from 12 500 to 26 400 g/mol, Mw from 16 700 to 56 400 g/mol, Tm up to 151.4 °C, and initial decomposition temperature over 241.8 °C. Their tensile strength reached 42.99 MPa with a strain at break of 30.00%. TPUs constructed simply with butylene, hexylene, and urethane linkages were successfully synthesized through a non-isocyanate route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delebecq E, Pascault J P, Boutevin B, et al. On the Versatility of Urethane/urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane[J]. Chem. Rev., 2013, 113: 80–118

    Article  Google Scholar 

  2. Guan J, Song Y H, Lin Y, et al. Progress in Study of Non-isocyanate Polyurethane[J]. .Ind. Eng. Chem. Res., 2011, 50: 6517–6527

    Article  Google Scholar 

  3. Ochiai B, Endo T. Carbon Dioxide and Carbon Disulfide as Resources for Functional Polymers[J]. Prog. Polym. Sci., 2005, 30: 183–215

    Article  Google Scholar 

  4. Kathalewar M S, Joshi P B, Sabnis A S, et al. Non-isocyanate Polyurethanes: from Chemistry to Applications[J]. RSC Adv., 2013, 3: 4110–4129

    Article  Google Scholar 

  5. Tamami B, Sohn S, Wilkes G L. Incorporation of Carbon Dioxide into Soybean Oil and Subsequent Preparation and Studies of Nonisocyanate Polyurethane Networks[J]. J. Appl. Polym. Sci., 2004, 92: 883–891

    Article  Google Scholar 

  6. Brocas A L, Cendejas G, Deffieux A, et al. Controlled Synthesis of Polyepichlorohydrin with Pendant Cyclic Carbonate Functions for Isocyanate-free Polyurethane Networks[J]. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 2677–2684

    Article  Google Scholar 

  7. Diakoumakos C D, Kotzev D L. Non-isocyanate-based Polyurethanes Derived upon the Reaction of Amines with Cyclocarbonate Resins[J]. Macromol. Symp., 2004, 216: 37–46

    Article  Google Scholar 

  8. Ochiai B, Inoue S, Endo T. One-pot Non-isocyanate Synthesis of Polyurethanes from Bisepoxide, Carbon Dioxide, and Diamine[J]. J. Polym. Sci., Part A: Polym. Chem., 2005, 43: 6613–6618

    Article  Google Scholar 

  9. Annunziata L, Diallo A K, Fouquay S, et al. α,ω-Di(glycerol carbonate) Telechelic Polyesters and Polyolefins as Precursors to Polyhydroxyurethanes: An Isocyanate-free Approach[J]. Green Chem., 2014, 16: 1947–1956

    Article  Google Scholar 

  10. Bähr M, Bitto A, Mülhaupt R. Cyclic Limonene Dicarbonate as a New Monomer for Non-isocyanate Oligo-and Polyurethanes (NIPU) Based upon Terpenes[J]. Green Chem., 2012, 14: 1447–1454

    Article  Google Scholar 

  11. Bähr M, Mülhaupt R. Linseed and Soybean Oil-based Polyurethanes Prepared via the Non-isocyanate Route and Catalytic Carbon Dioxide Conversion[J]. Green Chem., 2012, 14: 483–489

    Article  Google Scholar 

  12. Besse V, Auvergne R, Carlotti S, et al. Synthesis of Isosorbide Based Polyurethanes: An Isocyanate Free Method[J]. React. Funct. Polym., 2013, 73: 588–594

    Article  Google Scholar 

  13. Maier S, Loontjens T, Scholtens B, et al. Isocyanate-free Route to Caprolactam-blocked Oligomeric Isocyanates via Carbonylbiscaprolactam-( CBC)-mediated End Group Conversion[J]. Macromolecules, 2003, 36: 4727–4734

    Article  Google Scholar 

  14. Maier S, Loontjens T, Scholtens B, et al. Carbonylbiscaprolactam: A Versatile Reagent for Organic Synthesis and Isocyanate-free Urethane Chemistry[J]. Angew. Chem. Int. Ed., 2003, 42: 5094–5097

    Article  Google Scholar 

  15. Zimmermann J, Loontjens T, Scholtens B J R, et al. The Formation of Poly(ester-urea) Networks in the Absence of Isocyanate Monomers[J]. Biomaterials, 2004, 25: 2713–2719

    Article  Google Scholar 

  16. Tang D L, Mulder D, Noordover B A J, et al. Well-defined Biobased Segmented Polyureas Synthesis via a TBD-catalyzed Isocyanate-free Route[J]. Macromol. Rapid Commun., 2011, 32: 1379–1385

    Article  Google Scholar 

  17. Deepa P, Jayakannan M. Solvent-free and Nonisocyanate Melt Transurethane Reaction for Aliphatic Polyurethanes and Mechanistic Aspects[J]. J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 2445–2458

    Article  Google Scholar 

  18. Deepa P, Jayakannan M. Solvent-induced Self-organization Approach for Polymeric Architectures of Micropores, Hexagons and Spheres Based on Polyurethanes Prepared via Novel Melt Transurethane Methodology[J]. J. Polym. Sci., Part A: Polym. Chem., 2007, 45: 2351–2366

    Article  Google Scholar 

  19. Rokicki G, Piotrowska A. A New Route to Polyurethanes from Ethylene Carbonate, Diamines and Diols[J]. Polymer, 2002, 43: 2927–2935

    Article  Google Scholar 

  20. Ochiai B, Utsuno T. Non-isocyanate Synthesis and Application of Telechelic Polyurethanes via Polycondensation of Diurethanes Obtained from Ethylene Carbonate and Diamines[J]. J. Polym. Sci., Part A: Polym. Chem., 2013, 51: 525–533

    Article  Google Scholar 

  21. Sharma B, Ubaghs L, Keul H, et al. Synthesis and Characterization of Alternating Poly(amide urethane)s from e-Caprolactam, Amino Alcohols, and Diphenyl Carbonate[J]. Polymer, 2004, 45: 5427–5440

    Article  Google Scholar 

  22. Sharma B, Ubaghs L, Keul H, et al. Synthesis and Characterization of Alternating Poly(amide urethane)s from e-Caprolactone, Diamines and Diphenyl Carbonate[J]. Polymer, 2005, 46: 1775–1783

    Article  Google Scholar 

  23. Sharma B, Ubaghs L, Keul H, et al. Microstructure and Properties of Poly(amide urethane)s: Comparison of the Reactivity of a-Hydroxy-?-?-phenyl Urethanes and a-Hydroxy-?-?-hydroxyethyl Urethanes[J]. Macromol. Chem. Phys., 2004, 205: 1536–1546

    Article  Google Scholar 

  24. Li C G, Li S Q, Zhao J B, et al. Synthesis and Characterization of Aliphatic Poly(amide urethane)s Having Different Nylon 6 Segments through Non-isocyanate Route[J]. J. Polym. Res., 2014, 21: 498

    Article  Google Scholar 

  25. Li S Q, Zhao J B, Zhang Z Y, et al. Synthesis and Characterization of Aliphatic Segmented Poly(ether amide urethane)s through a Non-isocyanate Route[J]. RSC Adv., 2014, 4: 23720–23729

    Article  Google Scholar 

  26. Deng Y, Li S Q, Zhao J B, et al. Crystallizable and Tough Aliphatic Thermoplastic Poly(ether urethane)s Synthesized through a Non-isocyanate Route[J]. RSC Adv., 2014, 4: 43406–43414

    Article  Google Scholar 

  27. Deng Y, Li S Q, Zhao J B, et al. Aliphatic Thermoplastic Poly(ether urethane)s Having Long PEG Sequences Synthesized through a Non-isocyanate Route[J]. Chin. J. Polym. Sci., 2015, 33: 880–889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Zhao  (赵京波).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 21244006 and 50873013), the Beijing Natural Science Foundation (No. 2182056)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Deng, Y., Zhao, J. et al. Synthesis and Properties of Non-isocyanate Crystallizable Aliphatic Thermoplastic Polyurethanes. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1275–1280 (2018). https://doi.org/10.1007/s11595-018-1963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1963-0

Key words

Navigation