Skip to main content

Advertisement

Log in

Preparation of palygorskite-based phase change composites for thermal energy storage and their applications in Trombe walls

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability. Further, its energy storage ability was compared to that of ordinary concrete wall through contrastive test. The experiments show that palygorskite clay is a type of clay mineral with strong adsorption ability, and the purity of natural palygorskite clay can reach up to 97.1% after certain purification processes. Paraffin is well adsorbed by palygorskite, and the test results show that the optimal adsorption ratio is palygorskite: paraffin = 2:1 (mass ratio). Palygorskite/paraffin phase change composites can be obtained by using palygorskite as the adsorbing medium to adsorb paraffin. The composite materials exhibit good heat storage (release) performance, which can store heat with increasing environment temperature and release heat with decreasing temperature. This property not only increases the inertia to environment temperature change, but also promotes the energy migration in different time and space, thus achieving a certain energy-saving effect. The application of palygorskite/paraffin phase change composite materials to the Trombe wall can significantly reduce the fluctuation of indoor temperature and enhance the thermal inertia of indoor environment. From the aspect of energy storage effect, the Trombe wall fabricated using PCMs is significantly superior to the concrete wall with the same thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zalba B, Marin JM, Cabeza LF, et al. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications[J]. Applied Thermal Engineering, 2003, 23(3): 251–283

    Article  Google Scholar 

  2. Farid MM, Khudhair AM, Razack SAK, et al. A Review on Phase Change Energy Storage: Materials and Applications[J]. Energy Conversion and Management, 2004, 45(9-10): 1 597–1 615

    Article  Google Scholar 

  3. Khudhair AM, Farid MM. A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials[J]. Energy Conversion and Management, 2004, 45(2): 263–275

    Article  Google Scholar 

  4. Tyagi VV, Buddhi D. Pcm Thermal Storage in Buildings: A State of Art[J]. Renewable & Sustainable Energy Reviews, 2007, 11(6): 1 146–1 166

    Article  Google Scholar 

  5. Sharma A, Tyagi VV, Chen CR, et al. Review on Thermal Energy Storage with Phase Change Materials and Applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(2): 318–345

    Article  Google Scholar 

  6. Kuznik F, David D, Johannes K, et al. A Review on Phase Change Materials Integrated in Building Walls[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 379–391

    Article  Google Scholar 

  7. Lane GA. Solar Heat Storage: Latent Heat Materials[M]. CRC Press, Boco Raton, FL, 1983

    Google Scholar 

  8. Feldman D, Banu D, Hawes D, et al. Obtaining an Energy Storing Building Material by Direct Incorporation of an Organic-Phase Change Material in Gypsum Wallboard[J]. Solar Energy Materials, 1991, 22(2-3): 231–242

    Article  Google Scholar 

  9. Hawes DW, Banu D, Feldman D. The Stability of Phase-Change Materials in Concrete[J]. Solar Energy Materials and Solar Cells, 1992, 27(2): 103–118

    Article  Google Scholar 

  10. Hawes DW, Feldman D. Absorption of Phase-Change Materials in Concrete[J]. Solar Energy Materials and Solar Cells, 1992, 27(2): 91–101

    Article  Google Scholar 

  11. Kaasinen H. The Absorption of Phase-Change Substances into Commonly Used Building-Materials[J]. Solar Energy Materials and Solar Cells, 1992, 27(2): 173–179

    Article  Google Scholar 

  12. Hawes DW, Feldman D, Banu D. Latent-Heat Storage in Building- Materials[J]. Energy Build, 1993, 20(1): 77–86

    Article  Google Scholar 

  13. Feldman D, Banu D, Hawes D. Low Chain Esters of Stearic-Acid as Phase-Change Materials for Thermal-Energy Storage in Buildings[J]. Solar Energy Materials And Solar Cells, 1995, 36(3): 311–322

    Article  Google Scholar 

  14. Liu X, Liu HY, Wang SJ, et al. Preparation and Thermal Properties of Form Stable Paraffin Phase Change Material Encapsulation[J]. Energy Conversion And Management, 2006, 47(15-16): 2 515–2 522

    Article  Google Scholar 

  15. McCann JT, Marquez M, Xia Y. Melt Coaxial Electrospinning: A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers[J]. Nano Letters, 2006, 6(12): 2 868–2 672

    Article  Google Scholar 

  16. Onder E, Sarier N, Cimen E. Encapsulation of Phase Change Materials by Complex Coacervation to Improve Thermal Performances of Woven Fabrics[J]. Thermochimica Acta, 2008, 467(1-2): 63–72

    Article  Google Scholar 

  17. Chang M-W, Stride E, Edirisinghe M. A Novel Process for Drug Encapsulation Using a Liquid to Vapour Phase Change Material[J]. Soft Matter, 2009, 5(24): 5 029–5 036

    Article  Google Scholar 

  18. Zhang H, Wang X, Wu D. Silica Encapsulation of N-Octadecane Via Sol-Gel Process: A Novel Microencapsulated Phase-Change Material with Enhanced Thermal Conductivity and Performance[J]. Journal of Colloid and Interface Science, 2010, 343(1): 246–255

    Article  Google Scholar 

  19. Shi T, Sun W, Yang Y. Preparation and Heat Storage/Release Behavior of Latent Heat Storage Gypsum-Based Building Materials[J]. Materials and Structures, 2014, 47(3): 533–539

    Article  Google Scholar 

  20. Shi T, Sun W, Yang Y. Characterization of Expanded Graphite Microstructure and Fabrication of Composite Phase-Change Material for Energy Storage[J]. Journal of Materials in Civil Engineering, 2015, 27(4)

    Google Scholar 

  21. Xu BW, Li ZJ. Paraffin/Diatomite Composite Phase Change Material Incorporated Cement-Based Composite for Thermal Energy Storage[J]. Applied Energy, 2013, 105: 229–237

    Article  Google Scholar 

  22. Xu BW, Li ZJ. Paraffin/Diatomite/Multi-Wall Carbon Nanotubes Composite Phase Change Material Tailor-Made for Thermal Energy Storage Cement-Based Composites[J]. Energy, 2014, 72: 371–380

    Article  Google Scholar 

  23. Xu BW, Ma HY, Lu ZY, et al. Paraffin/Expanded Vermiculite Composite Phase Change Material as Aggregate for Developing Lightweight Thermal Energy Storage Cement-Based Composites[J]. Applied Energy, 2015, 160: 358–367

    Article  Google Scholar 

  24. Fang X, Zhang Z, Chen Z. Study on Preparation of Montmorillonite-Based Composite Phase Change Materials and Their Applications in Thermal Storage Building Materials[J]. Energy conversion and management, 2008, 49(4): 718–723

    Article  Google Scholar 

  25. Murray HH. Traditional and New Applications for Kaolin, Smectite, and Palygorskite: A General Overview[J]. Appl Clay Sci, 2000, 17(5-6): 207–221

    Article  Google Scholar 

  26. Bradley WF. The Structural Scheme of Attapulgite[J]. American Mineralogist, 1940, 25(6): 405–410

    Google Scholar 

  27. Galan E. Properties and Applications of Palygorskite-Sepiolite Clays[J]. Clay Min, 1996, 31(4): 443–453

    Article  Google Scholar 

  28. Murray HH. Applied Clay Mineralogy Today and Tomorrow[J]. Clay Min, 1999, 34(1): 39–49

    Article  Google Scholar 

  29. Liu P, Wang TM. Adsorption Properties of Hyperbranched Aliphatic Polyester. Grafted Attapulgite Towards Heavy Metal Ions[J]. Journal of Hazardous Materials, 2007, 149(1): 75–79

    Article  Google Scholar 

  30. Llovera J, Potau X, Medrano M, et al. Design and Performance of Energy-Efficient Solar Residential House in Andorra[J]. Applied Energy, 2011, 88(4): 1 343–1 353

    Article  Google Scholar 

  31. Koyunbaba BK, Yilmaz Z, Ulgen K. An Approach for Energy Modeling of a Building Integrated Photovoltaic (Bipv) Trombe Wall System[J]. Energy Build, 2013, 67: 680–688

    Article  Google Scholar 

  32. Saadatian O, Sopian K, Lim CH, et al. Trombe Walls: A Review of Opportunities and Challenges in Research and Development[J]. Renewable & Sustainable Energy Reviews, 2012, 16(8): 6 340–6 351

    Article  Google Scholar 

  33. Hordeski M. New Technologies for Energy Efficiency New York[M]. The Fairmont Press, 2011

    Google Scholar 

  34. Nelson V. Introduction to Renewable Energy[M]. Texas Taylor and Francis, 2011

    Google Scholar 

  35. Liu Y, Feng W. Integrating Passive Cooling and Solar Techniques into the Existing Building in South China [M]//Yang Q, Zhu L H, He J J, et al. Advances in Civil Engineering and Architecture Innovation, Pts 1–6. 2012: 3 717–3 720

    Google Scholar 

  36. Prakash G, Garg H. Solar Energy: Fundamentals and Applications[M]. Tata McGraw-Hill Publishing Company, 2000

    Google Scholar 

  37. Al-Karaghouli A, Kazmerski LL. Optimization and Life-Cycle Cost of Health Clinic Pv System for a Rural Area in Southern Iraq Using Homer Software[J]. Solar Energy, 2010, 84(4): 710–714

    Article  Google Scholar 

  38. MELERO S, MORGADO I, NEILA FJ, et al. Passive Evaporative Cooling by Porous Ceramic Elements Integrated in a Trombe Wall[C]. In: Proceedings of the Architecture & Sustainable Development (vol 2): 27th International Conference on Passive and Low Energy Architecture, F, 2011

    Google Scholar 

  39. Ji J, Luo C, Chow T-T, et al. Thermal Characteristics of a Building-Integrated Dual-Function Solar Collector in Water Heating Mode with Natural Circulation[J]. Energy, 2011, 36(1): 566–574

    Article  Google Scholar 

  40. Marinosci C, Strachan P, Semprini G, et al. Empirical Validation and Modelling of a Naturally Ventilated Rainscreen Façade Building [J]. Energy Build, 2011, 43(4): 853–863

    Article  Google Scholar 

  41. Zhai X, Song Z, Wang R. A Review for the Applications of Solar Chimneys in Buildings[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3757–3767

    Article  Google Scholar 

  42. Tunç M, Uysal M. Passive Solar Heating of Buildings Using a Fluidized Bed Plus Trombe Wall System[J]. Applied Energy, 1991, 38(3): 199–213

    Article  Google Scholar 

  43. Sadineni SB, Madala S, Boehm RF. Passive Building Energy Savings: A Review of Building Envelope Components[J]. Renewable & Sustainable Energy Reviews, 2011, 15(8): 3 617–3 631

    Article  Google Scholar 

  44. Chow T, Hand J, Strachan P. Building-Integrated Photovoltaic and Thermal Applications in a Subtropical Hotel Building[J]. Applied Thermal Engineering, 2003, 23(16): 2 035–2 049

    Article  Google Scholar 

  45. Jie J, Hua Y, Gang P, et al. Study of Pv-Trombe Wall Assisted with Dc Fan[J]. Building and Environment, 2007, 42(10): 3 529–3 539

    Article  Google Scholar 

  46. Sun W, Ji J, Luo C, et al. Performance of Pv-Trombe Wall in Winter Correlated with South Façade Design[J]. Applied Energy, 2011, 88(1): 224–231

    Article  Google Scholar 

  47. Onishi J, Soeda H, Mizuno M. Numerical Study on a Low Energy Architecture Based Upon Distributed Heat Storage System[J]. Renewable Energy, 2001, 22(1): 61–66

    Article  Google Scholar 

  48. Cabeza LF, Castellon C, Nogues M, et al. Use of Microencapsulated Pcm in Concrete Walls for Energy Savings[J]. Energy Build, 2007, 39(2): 113–119

    Article  Google Scholar 

  49. Khalifa AJN, Abbas EF. A Comparative Performance Study of Some Thermal Storage Materials Used for Solar Space Heating[J]. Energy Build, 2009, 41(4): 407–415

    Article  Google Scholar 

  50. Zalewski L, Joulin A, Lassue S, et al. Experimental Study of Small- Scale Solar Wall Integrating Phase Change Material[J]. Solar Energy, 2012, 86(1): 208–219

    Article  Google Scholar 

  51. Jiquan X, Yesen F, Liwen L. Discovery and Significance of Attapulgite of Xiaopanshan of Liuhe in Jiangsu Province[J]. Chinese Science Bulletin, 1980, 25(11): 513–515

    Google Scholar 

  52. Yesen F. Attapulgite in Jiangsu-Anhui Region[J]. Journal of Nanjing University, 1990, 26(1): 15

    Google Scholar 

  53. Fei X, Lin Y, Yuanfeng C, et al. Quantitative Analysis of X-Ray Diffraction for Palygorskite within Attapulgite Clay[J]. Geological Journal of China Universities, 2005, 11(3): 453–458

    Google Scholar 

  54. Zhen L, Lin Y, Fei X. Comment on. Quantitative Analysis of X-Ray Diffraction for Palygorskite within Attapulgite Clay[J]. Geological Journal of China Universities, 2006, 12(3): 410–412

    Google Scholar 

  55. Simpson S. Hydrogen-Isotope Exchange Behavior of Palygorskite at 22 °C[D]. Ontario: The University of Western Ontario, 1997

    Google Scholar 

  56. Gonzalez F, Pesquera C, Blanco C, et al. Structural and Textural Evolution of Al-and Mg-Rich Palygorskites, I. Under Acid Treatment [J]. Appl Clay Sci, 1989, 4(4): 373–388

    Article  Google Scholar 

  57. Pasupathy A, Velraj R, Seeniraj R. Phase Change Material-Based Building Architecture for Thermal Management in Residential and Commercial Establishments[J]. Renewable and Sustainable Energy Reviews, 2008, 12(1): 39–64

    Article  Google Scholar 

  58. Lee T, Hawes DW, Banu D, et al. Control Aspects of Latent Heat Storage and Recovery in Concrete[J]. Solar Energy Materials And Solar Cells, 2000, 62(3): 217–237

    Article  Google Scholar 

  59. Sarier N, Onder E. Organic Phase Change Materials and Their Textile Applications: An Overview[J]. Thermochimica Acta, 2012, 540: 7–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang  (张豪).

Additional information

Funded by the National Natural Science Foundation of China(No.51778582), the Public Projects of Zhejiang Province (2016C31009) and the Science and Technology Projects of Ministry of Housing and Urban Rural Construction (2014-K4-011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Li, S., Zhang, H. et al. Preparation of palygorskite-based phase change composites for thermal energy storage and their applications in Trombe walls. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 1306–1317 (2017). https://doi.org/10.1007/s11595-017-1746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1746-z

Key words

Navigation